Advertisement

A Mathematician Between Past and Future

Part of the Science Networks. Historical Studies book series (SNHS, volume 38)

Abstract

It may seem odd, at this stage, well before the end of this book, to find a chapter summing up von Neumann’s scientific thought. To tell the truth, this chapter will in no way exhaust the analysis of the scientific conceptions of our protagonist. On the contrary, this analysis will represent the main thread running through the rest of the book. However, precisely at this point, that is, on the eve of a crucial passage in his life, namely his move to the United States, it seems necessary to scrutinize the ideas and views with which he prepared to make this transition. This will allow us to examine in greater depth and understand more fully the significance of all the subsequent developments.

Keywords

Game Theory Mathematical Idea Mathematical Term Mathematical Practice Axiomatic Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

o

  1. Mirowski, P. 2002, Machine dreams. Economics becomes a cyborg science, Cambridge-New York, Cambridge University Press.Google Scholar
  2. Mirowski, P. 1992, “What were von Neumann and Morgenstern trying to accomplish?,” in Weintraub, ed. 1992: 113–147.Google Scholar
  3. Mirowski, P. 2002, Machine dreams. Economics becomes a cyborg science, Cambridge-New York, Cambridge University Press,.108.Google Scholar
  4. Aspray, W. 1990, John von Neumann and the origins of modern computing, Cambridge, MA, MIT Press, 26.Google Scholar
  5. Neumann (VON), J., AND R. H. Kent 1940, The estimation of the probable error from successive differences, Ballistic Research Laboratory Report No. 175, Aberdeen, February 14, 19 pp.Google Scholar
  6. Israel, G. 1977, “Un aspetto ideologico délia matematica contemporanea: il ‘bourbakismo’,” in Matematica e Fisica: struttura e ideologia, E. Donini, A. Rossi and T. Tonietti (eds.), Bari, De Donato: 35–70.Google Scholar
  7. Israel, G. 1978, “La matematica assiomatica e il ‘bourbakismo’,” in I fondamenti della matematica dall’Ottocento ad oggi, E. Casari, G. Israel, and F. Marchetti (eds.), Firenze, Guaraldi: 49–67.Google Scholar
  8. Corry, L. 1992, “Nicholas Bourbaki and the concept of mathematical structure,” Synthèse 22: 315–348.CrossRefGoogle Scholar
  9. Corry, L. 1996, Modern algebra and the rise of mathematical structures. Basel, Birkhäuser.Google Scholar
  10. Corry, L. 1997, “The origins of eternal truth in modern mathematics: Hilbert to Bourbaki,” Science in Context 10: 253–296.CrossRefGoogle Scholar
  11. Beaulieu, L. 1990, Bourbaki. Une histoire du groupe de mathématiciens français et de ses travaux (1934-1944), Ph. D. Thesis, Université de Montréal, 2 vols., 552 pp.Google Scholar
  12. Aubin, D. 1997, “The withering immortality of Nicolas Bourbaki: A cultural connector at the confluence of mathematics,” Science in Context 10: 297–342.CrossRefGoogle Scholar
  13. Mashaal, M. 2006, Bourbaki: A secret society of mathematicians, Providence, R.I., American Mathematical Society.Google Scholar
  14. Parshall, K.H. 1996, “How we got where we are: An international overview of mathematics in national contexts (1875-1900),” Notices of the American Mathematical Society 43, 287–296.Google Scholar
  15. Brigaglia A., AND G. Masotto 1982, Il Circolo matematico di Palermo, Bari, Edizioni Dedalo.Google Scholar
  16. Bourbaki, N. 1948, “L’architecture des mathématiques,” in Les grands courants de la pensée mathématique, F. Le Lionnais (ed.), Paris, Cahiers du Sud: 46–47.Google Scholar
  17. Israel, G. 1996a. La mathématisation du réel, Paris, Editions du Seuil (Italian translation La visione matematica delta realtà, Roma-Bari, Laterza, 1996, 3rd ed. 2003).Google Scholar
  18. Israel, G. 2002, “The two faces of mathematical modelling: Objectivism vs. subjectivism, simplicity vs. complexity,” in The application of mathematics to the sciences of nature. Critical moments and aspects, P. Cerrai, P. Freguglia, and C. Pellegrini (eds.), New York, Kluwer Academic/Plenum Publishers: 233–244.Google Scholar
  19. Neumann (VON), J. 1954a, “The Role of Mathematics in the Sciences and in Society,” Address at 4th Conference of Association of Princeton Graduate Alumni, June 1954: 16–29 [Vol. VI, no. 34].Google Scholar
  20. Prigogine, I. 1962, Introduction to nonequilibrium thermodynamics. New York, Wiley-Interscience.Google Scholar
  21. Mach, E. 1883, Die Mechanik in ihrer Entwicklung, historisch-kritisch dargestellt. Leipzig, Brokhaus (English translation from the 2nd ed., The science of mechanics; a critical and historical exposition of its principles, Chicago, The Open Court Publishing Co, 1893; 6th ed., with revisions through the 9th German ed. and new introduction by K. Menger, La Salle, Ill., Open Court Pub. Co., 1960). McCulloch W., and W. Pitts 1943,’ A logical calculus of the ideas immanent in nervous activity,” Bulletin of Mathematical Biophysics 5: 115-133.Google Scholar
  22. Heims, S. J. 1980, John von Neumann and Norbert Wiener. From Mathematics to the Technologies of Life and Death, Cambridge, MA, MIT Press, 360ff.Google Scholar
  23. Heims, S. J. 1980, John von Neumann and Norbert Wiener. From Mathematics to the Technologies of Life and Death, Cambridge, MA, MIT Press, 154.Google Scholar
  24. Rowe, D.E. 1989, “Klein, Hilbert, and the Göttingen mathematical tradition,” Osiris 5: 212.CrossRefGoogle Scholar
  25. Neumann (VON), J. 1937, “Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes,” Ergebnisse eines Mathematischen Kolloquium 8: 73–83 (English translation Neumann (von) 1945b).Google Scholar
  26. Lotka, A.J. 1925, Elements of Physical Biology, Baltimore, Williams &Wilkins company.Google Scholar
  27. Israel, G. 1993a, “The two paths of the mathematization of the social and economic sciences. The decline of the’ mathématique sociale’ and the beginnings of mathematical economics at the turn of the eighteenth century,” Physis, Rivista Internazionale di Storia delta Scienza 30: 27–78.Google Scholar
  28. Glimm, J., J. Impagliazzo, AND I. Singer, eds. 1990, The legacy of John von Neumann, Proceedings of Symposia in Pure Mathematics, No. 50, Providence, R.I., American Mathematical Society, 5–6.Google Scholar
  29. Wiener, N. 1964, God & Golem, Inc. A comment on certain points where cybernetics impinges on religion, Cambridge, MA, The MIT Press.Google Scholar
  30. Wald, A. 1950, Statistical decision functions, New York, Wiley.Google Scholar
  31. Aspray, W. 1990, John von Neumann and the origins of modern computing, Cambridge, MA, MIT Press, 316.Google Scholar

Copyright information

© Birkhäuser Verlag AG 2009

Personalised recommendations