Advertisement

János Neumann’s Early Years

Part of the Science Networks. Historical Studies book series (SNHS, volume 38)

Abstract

Our hero was born in Budapest on 28 December 1903. János Lájos Neumann was his name in Hungarian, Jancsi for short. He was the eldest son of Miksa and Margit Neumann, members of the large Jewish community resident in the capital. Hungary at the time was still part of the Austro-Hungarian Empire, within which it enjoyed a substantial political autonomy governed by rules established in 1867, when Franz Joseph I was crowned King of Hungary.

Keywords

Private Tutor Vienna Circle French Mathematician Young Talent United States Atomic Energy Commission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

o

  1. McCagg, W.O. 1972, Jewish nobles and geniuses in modern Hungary, New York, Columbia University Press.Google Scholar
  2. McCagg, W.O. 1997, A history of Habsburg Jews 1670–1918, Bloomington-Indianapolis, Indiana University Press.Google Scholar
  3. Rozenblit, M.L. 2001, Reconstructing a national identity: The Jews of Habsburg Austria during World War I, New York, Oxford University Press.Google Scholar
  4. Gerö, A. 2007, The Jewish Criterion in Hungary, New York, Columbia University Press.Google Scholar
  5. Jászi, O. 1929, The dissolution of the Habsburg monarchy, Chicago, University of Chicago Press.Google Scholar
  6. Horváth, Z. 1966, Die Jahrhundertwende in Ungarn. Geschichte der zweiten Reformgeneration 1896–1914, Budapest, Corvina Verlag.Google Scholar
  7. Ferdinandy, M. de 1967, Historia de Hungría, Madrid, Alianza Editorial.Google Scholar
  8. Gerö, A. 1995, Modern Hungarian society in the making. An unfinished experience, Budapest, Central European University Press/London, Oxford University Press.Google Scholar
  9. Heims, S. J. 1980, John von Neumann and Norbert Wiener. From Mathematics to the Technologies of Life and Death, Cambridge, MA, MIT Press.Google Scholar
  10. Grattan-Guinness, I., ed. 1994, Companion encyclopedia of the history and philosophy of the mathematical sciences, 2 vols., London-New York, Routledge.Google Scholar
  11. Szénassy, B. 1992, History of mathematics in Hungary until the 20th century, New York, Springer Verlag (translated and enlarged version of A Magyarországi Matematica Törtenete, Budapest, Akadémiai Kiadó, 1970).Google Scholar
  12. Hersh, R., AND V. John-Steiner 1993, “A visit to Hungarian mathematics,” The Mathematical Intelligencer 15(2): 13–26.CrossRefGoogle Scholar
  13. Fejér, L. 1904, “Untersuchungen über Fouriersche Reihen,” Mathematische Annalen 58: 51–69.CrossRefGoogle Scholar
  14. Bernkopf, M. 1966–67, “The development of function spaces with particular reference to their origins in integral equation theory,” Archives for the History of Exact Sciences 3: 1–96.CrossRefGoogle Scholar
  15. Israel, G. 1984, “Vito Volterra: un fisico matematico di fronte ai problemi della fisica del Novecento,” Rivista di Storia della Scienza 1: 39–72.Google Scholar
  16. Israel, G. 1991, “Volterra’s’ analytical mechanics’ of biological associations,” Archives Internationales d’Histoire des Sciences 41: 57–104, 306-351.Google Scholar
  17. Schmidt, E. 1907, “Zur Teorie der linearen und nichtlinearen Integralgleichungen,” Mathematischen Annalen 63: 433–476.CrossRefGoogle Scholar
  18. Riesz, F. 1907, “Sur les systèmes orthogonaux de fonctions,” Comptes Rendus de l’Académie des Sciences de Paris 144: 615–619.Google Scholar
  19. Fischer, E. 1907a, “Sur la convergence en moyenne,” Comptes Rendus de l’Académie des Sciences de Paris 144: 1022–1024.Google Scholar
  20. Fischer, E. 1907b, “Applications d’un théorème sur la convergence en moyenne,” Comptes Rendus de l’Académie des Sciences de Paris 144: 1148–1151.Google Scholar
  21. Riesz, F. 1910, “Untersuchungen über Systeme integrierbarer Funktionen,” Mathematische Annalen 69: 449–497.CrossRefGoogle Scholar
  22. Szénassy, B. 1992, History of mathematics in Hungary until the 20th century, New York, Springer Verlag (translated and enlarged version of A Magyarországi Matematica Törtenete, Budapest, Akadémiai Kiadó, 1970).Google Scholar
  23. Heims, S. J. 1980, John von Neumann and Norbert Wiener. From Mathematics to the Technologies of Life and Death, Cambridge, MA, MIT Press, 42–43.Google Scholar
  24. König, D. 1936, Theorie der Endlichen und Unendlichen Graphen, Kombinatorische Topologie der Streckenkomplexe, Leipzig, Akademische Verlagsgesellschaft M.b.H. (reprint New York, Chelsea Pub. Co., 1950; English translation Theory of finite and infinite graphs, with commentary by W.T. Tutte. Boston, Birkhäuser, 1990).Google Scholar
  25. Glimm, J., J. Impagliazzo, AND I. Singer, eds. 1990, The legacy of John von Neumann, Proceedings of Symposia in Pure Mathematics, No. 50, Providence, R.I., American Mathematical Society, 20.Google Scholar
  26. Aspray, W. 1990, John von Neumann and the origins of modern computing, Cambridge, MA, MIT Press, 247.Google Scholar
  27. Glimm, J., J. Impagliazzo, AND I. Singer, eds. 1990, The legacy of John von Neumann, Proceedings of Symposia in Pure Mathematics, No. 50, Providence, R.I., American Mathematical Society, 1–2.Google Scholar
  28. Zermelo, E. 1908, “Untersuchungen über die Grundlagen der Mengenlehre I,” Mathematische Annalen 65: 261–281.CrossRefGoogle Scholar
  29. Vonneuman, N. 1987, John von Neumann as seen by his brother. Meadowbrook, Pa, private publication (available in the John von Neumann papers at the Library of Congress, box 34, folder 3).Google Scholar
  30. Rédei, M., ed. 2005, John von Neumann: Selected letters, Providence, R.I., American Mathematical Society, 193.Google Scholar
  31. Rédei, M., ed. 2005, John von Neumann: Selected letters, Providence, R.I., American Mathematical Society, 200.Google Scholar
  32. Rédei, M., ed. 2005, John von Neumann: Selected letters, Providence, R.I., American Mathematical Society, 70.Google Scholar

Copyright information

© Birkhäuser Verlag AG 2009

Personalised recommendations