Advertisement

Hypermonogenic functions and their dual functions

  • Sirkka-Liisa Eriksson
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

In this paper we present a new integral formulas for hypermonogenic functions where the kernels are also hypermonogenic functions. We also introduce dual k-hypermonogenic functions. If k = 0, then k-hypermonogenic functions are monogenic functions and their dual functions are also monogenic. If k is nonzero the only function that is k-hypermonogenic function and dual hypermogenic is zero function.

The theory of dual functions is very similar to the theory of hypermonogenic functions. We present their integral formula and use it to present the integral formula for (1 − n)-hypermonogenic functions.

Keywords

Monogenic hypermonogenic Dirac operator hyperbolic metric 

Mathematics Subject Classification (2000)

Primary 30G35 Secondary 30A05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Brackx, F., Delanghe, R., and Sommen, F., Clifford Analysis, Pitman, Boston, London, Melbourne, 1982.zbMATHGoogle Scholar
  2. [2]
    Eriksson-Bique, S.-L., k-hypermonogenic functions. In Progress in Analysis, Vol I, World Scientific (2003), 337–348.MathSciNetGoogle Scholar
  3. [3]
    Eriksson, S.-L., Integral formulas for hypermonogenic functions, Bull. Bel. Math. Soc. 11 (2004), 705–717.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Eriksson, S.-L., Cauchy-type integral formulas for k-hypermonogenic functions. To appear in Proceedings of the 5th ISAAC conference, Catania, Italy 2005.Google Scholar
  5. [6]
    Eriksson-Bique, S.-L. and Leutwiler, H., On modified quaternionic analysis in ℝ3, Arch. Math. 70 (1998), 228–234.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [7]
    Eriksson-Bique, S.-L. and Leutwiler, H., Hypermonogenic functions. In Clifford Algebras and their Applications in Mathematical Physics, Vol. 2, Birkhäuser, Boston, 2000, 287–302.Google Scholar
  7. [8]
    Eriksson-Bique, S.-L. and Leutwiler, H., Hypermonogenic functions and Möbius transformations, Advances in Applied Clifford algebras, Vol 11 (S2), December (2001), 67–76.MathSciNetCrossRefGoogle Scholar
  8. [9]
    Eriksson, S.-L. and Leutwiler, H., Hypermonogenic functions and their Cauchy-type theorems. In Trend in Mathematics: Advances in Analysis and Geometry, Birkhäuser, Basel/Switzerland, 2004, 97–112.Google Scholar
  9. [10]
    Eriksson, S.-L. and Leutwiler, H., Contributions to the theory of hypermonogenic functions, Complex Variables and elliptic equations 51, Nos. 5–6 (2006), 547–561.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [11]
    Eriksson, S.-L. and Leutwiler, H., On hyperbolic function theory (to appear).Google Scholar
  11. [12]
    Eriksson, S.-L. and Leutwiler, H., Hyperbolic Function Theory, Adv. appl. Clifford alg. 17 (2007), 437–450.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [13]
    Leutwiler, H., Modified Clifford analysis, Complex Variables 17 (1992), 153–171.zbMATHMathSciNetGoogle Scholar
  13. [14]
    Leutwiler, H., Modified quaternionic analysis in ℝ3, Complex Variables 20 (1992), 19–51.zbMATHMathSciNetGoogle Scholar
  14. [15]
    Leutwiler, H., Quaternionic analysis in ℝ3 versus its hyperbolic modification. In F. Brackx et al. (eds.) Clifford Analysis and its Applications, Kluwer, Dordrecht 2001, 193–211.Google Scholar
  15. [16]
    Qiao, Y., Bernstein, S., Eriksson, S.-L. and Ryan, J., Function theory for Laplace and Dirac-Hodge operators in hyperbolic space, Journal d’Analyse Mathématiques 98 (2006), 43–64.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Sirkka-Liisa Eriksson
    • 1
  1. 1.Department of MathematicsTampere University of TechnologyTampereFinland

Personalised recommendations