Polynomial invariants for the rarita-schwinger operator

  • David Eelbode
  • Dalibor Šmíd
Part of the Trends in Mathematics book series (TM)


We show that polynomial invariant operators on functions with values in the Spin(n)-representation with highest weight (3/2,1/2,…,1/2) are spanned by powers of the symbols of the Laplace and Rarita-Schwinger operators. This result generalizes the well-known description of polynomial invariants on the scalar and spinor-valued functions. We describe the operators in the language of Clifford analysis.


Rarita-Schwinger operator Fischer decomposition Invariant polynomials 

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis, Research Notes in Mathematics 76, Pitman, London, 1982.Google Scholar
  2. [2]
    F. Brackx, H. De Schepper, D. Eelbode, V. Souček, Howe dual pairs in Hermitean Clifford analysis, submitted.Google Scholar
  3. [3]
    T. Branson, O. Hijazi, Bochner-Weitzenböck formulas associated with the Rarita-Schwinger operator, Internat. J. Math.,13 (2002), No. 2, pp. 137–182zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    J. Bureš, The Rarita-Schwinger operator and spherical monogenic forms, Complex Variables Theory Appl. 43 No. 1 (2000), pp. 77–108.zbMATHMathSciNetGoogle Scholar
  5. [5]
    J. Bureš, V. Souček, Eigenvalues for conformally invariant operators.Google Scholar
  6. [6]
    J. Bureš, F. Sommen, V. Souček, P. Van Lancker, Rarita-Schwinger type operators in Clifford analysis, Journal of Funct. Anal. 185 (2001), pp. 425–456.zbMATHCrossRefGoogle Scholar
  7. [7]
    J. Bureš, F. Sommen, V. Souček, P. Van Lancker, Symmetric analogues of Rarita-Schwinger equations, Annals of Global Analysis Geometry 21 No.3 (2001), pp. 215–240.Google Scholar
  8. [8]
    Constales, D., Sommen, F., Van Lancker, P., Models for irreducible Spin(m)-modules.Google Scholar
  9. [9]
    R. Delanghe, F. Sommen, V. Souček, Clifford analysis and spinor valued functions, Kluwer Academic Publishers, Dordrecht, 1992.Google Scholar
  10. [10]
    W. Fulton, J. Harris, Representation Theory: A First Course, Graduate Texts in Mathematics 129, Springer-Verlag, New York (1999).Google Scholar
  11. [11]
    W. Goodman, Representations and invariants of the classical groups, Cambridge Univ. Press, Cambridge (1998)zbMATHGoogle Scholar
  12. [12]
    J. Gilbert, M.A.M. Murray, Clifford algebras and Dirac operators in harmonic analysis, Cambridge University Press, Cambridge, 1991.zbMATHGoogle Scholar
  13. [13]
    R. Howe, Transcending classical invariant theory, J. Am. Math. Soc. 2 No.3 (1989), pp. 535–552.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    R. Howe, Remarks on classical invariant theory, Trans. Am. Math. Soc. 313 (1989), pp. 539–570.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics 7, Springer-Verlag, New York (1972).Google Scholar
  16. [16]
    I. Porteous, Clifford Algebras and the Classical groups, Cambridge University Press (1995).Google Scholar
  17. [17]
    V. Severa, Invariant differential operators between spinor-valued forms, PhD-thesis, Charles University, Praha (1998).Google Scholar
  18. [18]
    P. Van Lancker, Rarita-Schwinger fields in the half space, Complex Variables and Elliptic Equations 51 No. 5–6 (2006), pp. 563–579.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • David Eelbode
    • 1
  • Dalibor Šmíd
    • 2
  1. 1.Clifford Research Group Dept. of Mathematical AnalysisGhent University Galglaan 2GhentBelgium
  2. 2.Mathematical InstituteCharles UniversityPrague 8Czech Republic

Personalised recommendations