On the CK-extension for a Special Overdetermined System in Complex Clifford Analysis

  • Bram De Knock
  • Dixan Peña Peña
  • Frank Sommen
Conference paper
Part of the Trends in Mathematics book series (TM)


In this paper we investigate a new overdetermined system in ℝm+1, called RicSom system, arising from adding one extra real dimension to the Hermitian Dirac system in ℝm, m = 2n, that uses the complex structure of ℂn. For this new system we consider a CK-extension type problem.


Clifford algebras Dirac operator CK-extension problem 

Mathematics Subject Classification (2000)

Primary 30G35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Brackx, J. Bureš, H. De Schepper, D. Eelbode, F. Sommen and V. Souček, Funda-ments of Hermitean Clifford Analysis. Part I: Complex structure, Complex Analysis and Operator Theory 1(3) (2007), 341–365.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    F. Brackx, J. Bureš, H. De Schepper, D. Eelbode, F. Sommen and V. Souček, Fundaments of Hermitean Clifford Analysis. Part II: Splitting of h-monogenic equations, Complex Variables and Elliptic Equations 52(10–11) (2007), 1063–1079.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Research Notes in Mathematics 76, Pitman Advanced Publishing Program, Boston-London-Melbourne, 1982.Google Scholar
  4. [4]
    F. Brackx, H. De Schepper and F. Sommen, The Hermitean Clifford analysis toolbox, to appear in Advances in Applied Clifford Algebras.Google Scholar
  5. [5]
    R. Delanghe, F. Sommen and V. Souček, Clifford Algebra and Spinor-Valued Functions. A Function Theory for the Dirac Operator, Mathematics and its Applications 53, Kluwer Academic Publishers, Dordrecht, 1992.Google Scholar
  6. [6]
    R. Rocha-Chávez, M. Shapiro and F. Sommen, Integral theorems for functions and differential forms inm, Research Notes in Mathematics 428, Chapman & Hall/CRC, New York, 2002.Google Scholar
  7. [7]
    I. Sabadini and F. Sommen, Hermitian Clifford analysis and resolutions, Mathemat-ical Methods in the Applied Sciences 25(16–18) (2002), 1395–1414.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Bram De Knock
    • 1
  • Dixan Peña Peña
    • 1
  • Frank Sommen
    • 1
  1. 1.Department of Mathematical Analysis Faculty of EngineeringGhent UniversityGentBelgium

Personalised recommendations