n-Dimensional Bloch Classes

  • L. F. Reséndis O.
  • L. M. Tovar S.
Conference paper
Part of the Trends in Mathematics book series (TM)


In this paper we give a new generalization for the unit ball in ℝn, of Bloch space. We justify our definition by showing the connection between our proposal with the analytic, quaternionic and monogenic cases.


Subharmonic function Bloch and Qp classes 

Mathematics Subject Classification (2000)

Primary 30G35 Secondary 30C45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Aleman, Hilbert spaces of analytic functions between the Hardy and Dirichlet spaces, Proc. Amer. Math. Soc. 115 (1992), 97–104.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    R. Aulaskari and P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic funtion to be normal, Complex Analysis and its Appli-cations, Pitman Research Notes in Math. 305, Longman Scientific and Technical, Harlow (1994), 136–146.Google Scholar
  3. [3]
    J. Anderson, J. Clunie and Ch. Pomerenke, On Bloch Functions and Normal Functions, J. Reine Angew. 270 (1974), 12–37.zbMATHGoogle Scholar
  4. [4]
    R. Aulaskari, D. Stegenga and J. Xiao, Some subclasses of BMOA and their characterization in terms of Carleson measures, Rocky Mountain J. Math. 26 (1996), 485–506.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    R. Aulaskari, L.F. Reséndis O. and L.M. Tovar S., Q p spaces and Harmonic Majorants, Complex Variables 49 (2004), 241–256.zbMATHCrossRefGoogle Scholar
  6. [6]
    R. Aulaskari, J. Xiao and R. Zhao On Subspaces and Subsets of BMOA and UBC, Analysis, 15, (1995), 101–121.zbMATHMathSciNetGoogle Scholar
  7. [7]
    S. Axler, P. Bourdon and W. Ramey Harmonic Function Theory, Graduate Texts in Mathematics 137, (Second Edition), 2001.Google Scholar
  8. [8]
    A. Baernstein Analytic functions of Bounded Mean Oscillation, Aspects of Contemporary Complex Analysis, Academic Press, 1980, 2–26.Google Scholar
  9. [9]
    A.F. Beardon The Geometry of Discrete Groups, Graduate Texts in Mathematics 91, 1983.Google Scholar
  10. [10]
    S. Bernstein, K. Gürlebeck, L.F. Reséndis O. and L.M. Tovar S. Dirichlet and Hardy Spaces of Harmonic and Monogenic Functions, Journal for Analysis and its Applications, Volume 24, (2005), No. 4, 763–789.MathSciNetGoogle Scholar
  11. [12]
    J.C. Bishop, Bounded functions in the little Bloch space, Pacific J. Math. 142 (1990), 209–225.zbMATHMathSciNetGoogle Scholar
  12. [13]
    J. Cnops, R. Delanghe. Möbius Invariant Spaces in the Unit Ball, Applicable Analysis. Vol. 73,(1-2), 45–64.Google Scholar
  13. [14]
    J. Cnops, R. Delanghe, K. Gürlebeck and M. Shapiro, Q p spaces in Clifford Analysis, Advances in Applied Clifford Algebras 11 (S), Ed. Universidad Nacional Autónoma de México, 2001, 201–218.MathSciNetCrossRefGoogle Scholar
  14. [15]
    J.B. Conway Functions of One Complex Variable, Graduate Texts in Mathematics, 1973, (1st ed.).Google Scholar
  15. [16]
    N. Danikas Some Banach spaces of Analytic Functions, Function spaces and Complex Analysis, Summer school Ilomantsi, Finland, August 25-29, Joensuu 1997, Re. Ser. 2 (1999), 9–35.MathSciNetGoogle Scholar
  16. [17]
    K. Gürlebeck, U. Kähler, M. Shapiro and L.M. Tovar On Q p spaces of quaternion-valued functions, Complex Variables, 64, (2001), 33–50.zbMATHGoogle Scholar
  17. [18]
    K. Gürlebeck and H.R. Malonek, On stricted inclusions of weighted Dirichlet spaces of monogenic functions, Bulletin of the Australian Mathematical Society, 39 (1999), 115–135.zbMATHGoogle Scholar
  18. [19]
    E. Landau, Über die Blochsche Konstante und zwei verwandte Weltkonstanten, Math. Zeitschr. 30, 608–634 (1929), Coll. Works 9, 75-101.zbMATHCrossRefGoogle Scholar
  19. [20]
    F. John and L. Nirenberg On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [21]
    I.M. Mitelman and M.V. Shapiro, Differentiation of the Martinelli-Bochner integrals and the notion of hyperderivability, Mathematische Nachrichten, 172, 1995, 211–238.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [22]
    R. Remmert. Classical Topics in Complex Function Theory, Springer Verlag, Graduate Texts in Mathematics, 172.Google Scholar
  22. [23]
    K. Stephenson, Construction of an inner function in the little Bloch Space, Trans. Amer. Math. Soc. 1988, 713–720.Google Scholar
  23. [24]
    K. Stroethoff, Besov-Type Characterization for the Bloch Space, Bull. Austral. Math. Soc. Vol. 39, (1989), 405–420.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [25]
    A. Sudbery Quaternionic Analysis, Mathematical Proceedings of the Cambridge Philosophical Society, 85, 199–225.Google Scholar
  25. [26]
    S. Yamashita, Hyperbolic Hardy Classes and Hyperbolically Dirichlet-finite Functions, Hokkaido Math. J. 10, (1981), 700–722.MathSciNetGoogle Scholar
  26. [27]
    R. Zhao, On α-Bloch functions and VMOA, Acta Math. Sci. 16,(3) (1996), 349–360.zbMATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • L. F. Reséndis O.
    • 1
  • L. M. Tovar S.
    • 2
  1. 1.Universidad Autónoma Metropolitana-AzcapotzalcoMéxico
  2. 2.Escuela Superior de Física y Matemáticas del IPND.F. México

Personalised recommendations