Hilbert Transforms on the Sphere and Lipschitz Surfaces

  • Tao Qian
Conference paper
Part of the Trends in Mathematics book series (TM)


Through a double-layer potential argument we define harmonic conjugates of the Cauchy type and prove their existence and uniqueness in Lipschitz domains. We further define inner and outer Hilbert transformations on Lipschitz surfaces and prove their boundedness in L p , where the range for the index p depends on the Lipschitz constant of the boundary surface. The inner and outer Poisson kernels, the Cauchy type conjugate inner and outer Poisson kernels, and the kernels of the inner and outer Hilbert transformations on the sphere are obtained. We also obtain Abel sum expansions of the kernels. The study serves as a justification of the methods in a series of papers of Brackx et al. based on their method for computation of a certain type of harmonic conjugates.


Poisson kernel Conjugate Poisson kernel Schwarz kernel Hilbert transformation Cauchy integral double-layer potential Clifford algebra 

Mathematics Subject Classification (2000)

Primary 62D05, 30D10 Secondary 42B35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Axelsson, Transmission problems and boundary operators, Integral Equation and Operator Theory, 50 (2004), 147–164.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [3]
    S. Bell, The Cauchy transform, potential theory and conformal mappings, 1992.Google Scholar
  3. [4]
    F. Brackx, B. De Knock, H. De Schepper and D. Eelbode, On the interplay between the Hilbert transform and conjugate harmonic functions, Mathematical Methods in the Applied Sciences, 29 (2006), 1435–1450.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [5]
    F. Brackx and H. De Schepper, Conjugate harmonic functions in Euclidean space: a spherical approach, Computational Methods and Function Theory, to appear in CMFT 2006.Google Scholar
  5. [6]
    F. Brackx, H. De Schepper and D. Eelbode, A new Hilbert transform on the unit sphere in Rm, Complex Variables and Elliptic Equations, 51 (2006), 453–462.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [7]
    F. Brackx and N. Van Acker, A conjugate Poisson kernel in Euclidean space, Simon Stevin, 67 (1993), 3–14.zbMATHGoogle Scholar
  7. [8]
    D. Constales, A conjugate harmonic to the Poisson kernel in the unit ball of Rn, Simon Stevin, 62 (1988), 289–291.zbMATHMathSciNetGoogle Scholar
  8. [9]
    R. Coifman, A. McIntosh and Y. Meyer, L’ intégrale de Cauchy définit un opérateur borné sur L pour les courbes lipschitziennes, Ann. Math. 116 (1982), 361–387.CrossRefMathSciNetGoogle Scholar
  9. [10]
    R. Delanghe, F. Sommen and V. Soucek, Clifford Algebra and Spinor-Valued Functions, 53, Kluwer Academic Publishers, Dordrecht, Boston, London, 1992.zbMATHGoogle Scholar
  10. [11]
    E. Fabes, M. Jodeit and N. Riviére, Potential techniques for boundary value problems on C1 domains, Acta Math., 141 (1978), 165–186.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [12]
    J.B. Garnett, Bounded Analytic Functions, Academic Press, 1987.Google Scholar
  12. [13]
    J. Gilbert and M. Murray, Clifford Algebra and Dirac Operator in Harmonic Analysis, Cambridge University Press, Cambridge, MA 1991.Google Scholar
  13. [14]
    C.E. Kenig, Weighted Hardy spaces on Lipschitz domains, Amer. J. Math., 102 (1980), 129–163.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [15]
    C.E. Kenig, Harmonic analysis techniques for second order elliptic boundary value problems, CBMS, Regional Conference Series in Mathematics, 83, 1991.Google Scholar
  15. [16]
    C. Li, A. McIntosh and S. Semmes, Convolution singular integrals on Lipschitz surfaces, J. Amer. Math. Soc., 5 (1992), 455–481.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [17]
    C. Li, A. McIntosh and T. Qian, Clifford algebras, Fourier transforms, and singular convolution operators on Lipschitz surfaces, Revista Mathemática Iberoamericana, 10 (1994), 665–721.zbMATHMathSciNetGoogle Scholar
  17. [18]
    T. Qian, Singular integrals with holomorphic kernels and H Fourier multipliers on star-shaped Lipschitz curves, Studia Mathematica, 123 (1997), 195–216.zbMATHMathSciNetGoogle Scholar
  18. [19]
    T. Qian, Fourier Analysis on starlike Lipschitz surfaces, Journal of Functional Analysis, 183 (2001), 370–412.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [21]
    G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation, J. Funct. Anal., 59 (1984), 572–611.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Tao Qian
    • 1
  1. 1.Department of MathematicsUniversity of Macau MacaoChina SAR

Personalised recommendations