Advertisement

Differential Equations in Algebras

  • Yakov Krasnov
Part of the Trends in Mathematics book series (TM)

Abstract

The aim of this work is to investigate how topological and dynamical properties of differential equations (in the sequel DE) are reflected in the associated algebras, as well as to show how basic algebraic concepts provide valuable insights in DE.

Keywords

Non-associative algebra Riccati equation Dirac equation idempotents Peirce number symmetry operator 

Mathematics Subject Classification (2000)

Primary 17A 34G20 35E20 47H60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, II, Comm. Pure Applied Math. 12, 1959, 623–727, 17, 1964, 35-92.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    V.I. Arnold, Geometrical Methods In The Theory Of Ordinary Differential Equations, Springer-Verlag (1988).Google Scholar
  3. [3]
    M.F. Atiyah, R. Bott, A Lefschetz fixed point formula for elliptic complexes: II. Applications, Ann. of Math. (2) 88 (1968), 451–491.CrossRefMathSciNetGoogle Scholar
  4. [4]
    Z. Balanov and Y. Krasnov, Complex structures in real algebras I. Two-dimensional commutative case, Comm. Algebra 31 (2003), no. 9, 4571–4609.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Z. Balanov, Y. Krasnov, W. Krawcewicz, Complex structures in algebras and bounded solutions to quadratic ODEs, Funct. Differ. Equ. 10 (2003), no. 1-2, 65–81.zbMATHMathSciNetGoogle Scholar
  6. [6]
    F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis, Pitman Research Notes in Math; 76, 1982, 308 pp.Google Scholar
  7. [7]
    T. Date, Classification and analysis of two-dimensional real homogeneous quadratic differential equation systems, J. Differential Equations 3, no. 2 (1979), 311–334.CrossRefMathSciNetGoogle Scholar
  8. [8]
    S. Eidelman, Parabolic systems, North-Holland Publishing Company, 1969, 469 pp.Google Scholar
  9. [9]
    S.D. Eidelman, Y. Krasnov, Operator method for solution of PDEs based on their symmetries. Oper. Theory Adv. Appl., 157, Birkhäuser, Basel, 2005, pp. 107–137.Google Scholar
  10. [10]
    S.D. Furta On non-integrability of general systems of differential equations. Z. Angew. Math. Phys. 47 (1996), no. 1, 112–131.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    R.P. Gilbert, J.L. Buchanan, First Order Elliptic Systems, Mathematics in Science and Engineering; 163, Academic Press, 1983, 281 pp.Google Scholar
  12. [12]
    I.J. Good, A simple generalization of analytic function theory, Exposition. Math, 6, no. 4, 1988, 289–311.zbMATHMathSciNetGoogle Scholar
  13. [13]
    A. Goriely A brief history of Kovalevskaya exponents and modern developments. Regul. Chaotic Dyn. 5 (2000), no. 1, 3–15.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics 38, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002).Google Scholar
  15. [15]
    M. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Bifurcations of Vector Fields, Academic Press, 1974.Google Scholar
  16. [16]
    P.W. Ketchum, Analytic functions of hypercomplex variables, Trans. Amer. Mat. Soc., 30, # 4, pp 641–667, 1928.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    M.K. Kinyon, A.A. Sagle, Quadratic dynamical systems and algebras, J. Differential Equations 117 no. 1 (1995), 67–126.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Y. Krasnov, Commutative algebras in Clifford analysis, Progress in analysis, Vol. I, II (Berlin, 2001), 349–359, World Sci. Publishing, River Edge, NJ, (2003).Google Scholar
  19. [19]
    Y. Krasnov, The structure of monogenic functions, Clifford Algebras and their Applications in Mathematical Physics, vol 2, Progr. Phys., 19, Birkhäuser, Boston pp. 247–272, 2000.Google Scholar
  20. [20]
    J. Llibre, X. Zhang, Polynomial first integrals of quadratic systems, Rocky Mountain J. Math. 31 (2001), no. 4, 1317–1371.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    L. Markus, Quadratic differential equations and non-associative algebras, Contributions to the theory of nonlinear oscillations, Vol. V (L. Cesari, J.P. LaSalle, and S. Lefschetz, eds.), Princeton Univ. Press, Princeton (1960), 185–213. J. Math. Pures Appl. 8 (1960), 187–216.Google Scholar
  22. [22]
    M. Mencinger, On stability of the origin in quadratic systems of ODEs via Markus approach, Nonlinearity 16 (2003), no. 1, 201–218.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    P.J. Olver, Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge (1995).zbMATHGoogle Scholar
  24. [24]
    V.P. Palamodov, Linear differential operators with constant coefficients, Springer-Verlag, New York-Berlin 1970, 444 pp.zbMATHGoogle Scholar
  25. [25]
    P.S. Pedersen, Cauchy’s integral theorem on a finitely generated, real, commutative, and associative algebra. Adv. Math. 131 (1997), no. 2, 344–356.zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    I.G. Petrovsky, Partial Differential Equations, CRC Press, Boca Raton, 1996.Google Scholar
  27. [27]
    R.D. Schafer, The Peirce decomposition, Section 3.2 in An Introduction to Nonassociative Algebras. New York: Dover (1996), 32–37.Google Scholar
  28. [28]
    I.R. Shafarevich, Basic Algebraic Geometry, IV, Springer, Berlin-Heidelberg-New York (1977).Google Scholar
  29. [29]
    G.E. Shilov, Integral curves of a homogeneous equation of the first order, (Russian) Uspehi Matem. Nauk (N.S.) 5 (1950), no. 5(39), 193–203.zbMATHMathSciNetGoogle Scholar
  30. [30]
    K.S. Sibirsky, Introduction to Topological Dynamics. Translated from the Russian by L.F. Boron. Noordhoff International Publishing, Leiden (1975).zbMATHGoogle Scholar
  31. [31]
    R.A. Smith, Orbital stability for differential equations, J. Differential Equations 69 (1987), 265–287.zbMATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    F. Sommen, N. Van Acker, Monogenic differential operators, Results in Math. Vol. 22, 1992, pp. 781–798.zbMATHGoogle Scholar
  33. [33]
    A. Tsygvintsev, On the existence of polynomial first integrals of quadratic homogeneous systems of ordinary differential equations, J. Phys. A 34 (2001), no. 11, 2185–2193.zbMATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    I. Vekua, Generalized analytic functions. London, Pergamon, 1962.zbMATHGoogle Scholar
  35. [35]
    S. Walcher, Algebras and Differential Equations, Hadronic Press, Palm Harbor, FL, (1991).Google Scholar
  36. [36]
    B. Zalar, M. Mencinger, On stability of critical points of Riccati differential equations in nonassociative algebras, Glas. Mat. Ser. III 38(58) (2003), no. 1, 19–27.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Yakov Krasnov
    • 1
  1. 1.Department of MathematicsBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations