Advertisement

An Extension Theorem for Biregular Functions in Clifford Analysis

  • Ricardo Abreu Blaya
  • Juan Bory Reyes
Part of the Trends in Mathematics book series (TM)

Abstract

In this contribution we are interested in finding necessary and sufficient conditions for the two-sided biregular extendibility of functions defined on a surface of ℝ2n, but the latter without imposing any smoothness requirement.

Keywords

Clifford analysis biregular functions Bochner-Martinelli formulae extension theorems 

Mathematics Subject Classification (2000)

Primary 30E20, 30E25 Secondary 30G20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abreu Blaya, R.; Bory Reyes, J.; Peña Peña, D. and Sommen, F. The isotonic Cauchy transform. Adv. Appl. Clifford Algebras, Vol. 17, (2007) no. 2, 145–152.zbMATHCrossRefGoogle Scholar
  2. [2]
    Bory Reyes, J.; Abreu Blaya, R. Cauchy transform and rectifiability in Clifford analysis. Z. Anal. Anwendungen 24 (2005), no. 1, 167–178.zbMATHMathSciNetGoogle Scholar
  3. [3]
    Bory Reyes, J.; Peña Peña, D. and Sommen, F. A Davydov type theorem for the isotonic Cauchy transform. J. Anal. Appl. Vol. 5, (2007), no. 2, 109–121.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Brackx, F.; Delanghe, R.; Sommen, F. Clifford analysis. Research Notes in Mathe-matics, 76. Pitman (Advanced Publishing Program), Boston, MA, 1982.Google Scholar
  5. [5]
    Brackx, F.; Pincket, W. A Bochner-Martinelli formula for the biregular functions of Clifford analysis. Complex Variables Theory Appl. 4 (1984), no. 1, 39–48.zbMATHMathSciNetGoogle Scholar
  6. [6]
    Brackx, F.; Pincket, W. The biregular functions of Clifford analysis: some special topics. Clifford algebras and their applications in mathematical physics (Canterbury, 1985), 159-166, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 183, Reidel, Dordrecht, 1986.Google Scholar
  7. [7]
    Brackx, F.; Pincket, W. Two Hartogs theorems for nullsolutions of overdetermined systems in Euclidean space. Complex Variables Theory Appl. 4 (1985), no. 3, 205–222.zbMATHMathSciNetGoogle Scholar
  8. [8]
    David, G.; Semmes, S. Analysis of and on uniformly rectifiable sets. Mathematical Surveys and Monographs, 38. American Mathematical Society, Providence, RI, 1993.Google Scholar
  9. [9]
    Federer, H. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York 1969.Google Scholar
  10. [10]
    Huang, Sha; Qiao, Yu Ying; Wen, Guo Chun. Real and complex Clifford analysis. Advances in Complex Analysis and its Applications, 5. Springer, New York, 2006.Google Scholar
  11. [11]
    Mattila, P. Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995.Google Scholar
  12. [12]
    Range, R. M. Complex analysis: a brief tour into higher dimensions. Amer. Math. Monthly, 110 (2003), no. 2, 89–108.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Rocha Chávez, R.; Shapiro, M.; Sommen, F. Integral theorems for functions and differential forms in ℂm. Research Notes in Mathematics, 428. Chapman & Hall/CRC, Boca Raton, FL, 2002.Google Scholar
  14. [14]
    Sommen, F. Plane waves, biregular functions and hypercomplex Fourier analysis.Proceedings of the 13th winter school on abstract analysis (Srn, 1985). Rend. Circ. Mat. Palermo (2) Suppl. No. 9 (1985), 205–219 (1986).Google Scholar
  15. [15]
    Sommen, F. Martinelli-Bochner type formulae in complex Clifford analysis. Z. Anal. Anwendungen 6 (1987), no. 1, 75–82.zbMATHMathSciNetGoogle Scholar
  16. [16]
    Sommen, F.; Peña Peña, D. Martinelli-Bochner formula using Clifford analysis, Archiv der Mathematik, 88 (2007), no. 4, 358–363.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Ricardo Abreu Blaya
    • 1
  • Juan Bory Reyes
    • 2
  1. 1.Facultad deInformática y MatemáticaUniversidad de HolguínHolguínCuba
  2. 2.Departamento de MatemáticaUniversidad de OrienteSantiago de CubaCuba

Personalised recommendations