Skip to main content

Chaos in Mean-field Spin-glass Models

  • Conference paper
Spin Glasses: Statics and Dynamics

Part of the book series: Progress in Probability ((PRPR,volume 62))

Abstract

Physicists understand mean-field spin-glass models as possessing a complex free-energy landscape with many equilibrium states. The problem of chaos concerns the evolution of this landscape upon changing the external parameters of the system and is considered relevant for the interpretation of important features of real spin-glass and for understanding the performance of numerical algorithms. The subject is strongly related to that of constrained systems which is considered by mathematicians the natural framework for proving rigorously some of the most peculiar properties of Parisi’s replicasymmetry-breaking solution of mean-field spin-glass models, notably ultrametricity. Many aspects of the problems turned out to possess an unexpected level of difficulty and are still open. We present the results of the physics literature on the subject and discuss the main unsolved problems from a wider perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The problem of chaos has attracted much attention and has been studied by various approaches including: scaling arguments and real space renormalization group analysis A.J. Bray and M.A. Moore, Phys. Rev. Lett. 58, 57 (1987). D.S. Fisher and D.A. Huse, Phys. Rev. B 38, 386 (1988). J.R. Banavar and A.J. Bray, Phys. Rev. B 35, 8888 (1987). M. Nifle and H.J. Hilhorst, Phys. Rev. Lett 68, 2992 (1992); analytical and numerical studies on the mean field models, A. Billoire and B. Coluzzi Phys. Rev. E 67, 036108 (2003); A. Billoire and E. Marinari, cond-mat/020247; T. Rizzo and A. Crisanti, Phys. Rev. Lett. 90, 137201 (2003); numerical studies on finitedimensional Edwards-Andersion models, F. Ritort, Phys. Rev. B 50, 6844 (1994). M. Ney-Nifle, Phys. Rev. B 57, 492 (1997). D.A. Huse and L-F. Ko, Phys. Rev. B 56, 14597 (1997). A. Billoire and E. Marinari, J. Phys. A 33, L265 (2000). T. Aspelmeier, A.J. Bray, and M.A. Moore, Phys. Rev. Lett. 89, 197202 (2002). M. Sasaki, K. Hukushima, H. Yoshino, H. Takayama, cond-mat0411138; analytical and numerical studies on elastic manifolds in random media, D.S. Fisher and D.A. Huse, Phys. Rev. B 43, 10728 (1991). M. Sales and H. Yoshino Phs. Rev. E 65 066131 (2002). A. da Silveira and J.P. Bouchaud, Phys. Rev. Lett. 93, 015901 (2004). Pierre Le Doussal, cond-mat/0505679. It has been proposed that the chaos effect is a possible mechanism of the so-called rejuvenation effect found experimentally. See for example, P.E. Jonsson, R. Mathieu, P. Nordblad, H. Yoshino, H. Aruga Katori, A. Ito, Phys. Rev. B 70, 174402 (2004) and references there in. The problem of the temperature dependence of the Gibbs measure of the Random Energy Model has been also investigated both in the physics literature (M. Sales and J.-P. Bouchaud, Europhys. Lett. 56, 181 (2001)) and in the mathematical physics literature, I. Kurkova, J. Stat. Phys. 111, 35, (2003).

    Article  Google Scholar 

  2. M. Mézard, G. Parisi, and M.A. Virasoro, “Spin glass theory and beyond”, World Scientific (Singapore 1987).

    Google Scholar 

  3. David J. Earl and Michael W. Deem, Phys. Chem. Chem. Phys., 2005, 7, 3910.

    Article  Google Scholar 

  4. T. Rizzo, Europhys. Jour. B 29, 425 (2002).

    Google Scholar 

  5. T. Rizzo and A. Crisanti, Phys. Rev. Lett. 90, 137201 (2003).

    Article  Google Scholar 

  6. H. Yoshino and T. Rizzo, Phys. Rev. B 73, 064416 (2006), Phys. Rev. B 77, 104429 (2008).

    Article  Google Scholar 

  7. T. Rizzo, J. Phys. A: Math. Gen. 34, 5531–5549 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Franz and M. Ney-Nifle, J. Phys. A: Math. Gen. 26, L641 (1993).

    Article  Google Scholar 

  9. I. Kondor, J. Phys. A 22 (1989) L163.

    Article  Google Scholar 

  10. S. Franz, G. Parisi, M.A. Virasoro, J. Physique I 2 (1992) 1969.

    Article  Google Scholar 

  11. T. Nieuwenhuizen, Phys. Rev. Lett. 74 4289 (1995).

    Article  Google Scholar 

  12. T. Aspelmeier, J. Phys. A: Math. Theor. 41 (2008) 205005, J. Stat. Mech. (2008) P04018, Phys. Rev. Lett. 100:117205, 2008.

    Article  MathSciNet  Google Scholar 

  13. M. Talagrand, The Parisi formula. Annals of Mathematics 163, no 1, 2006, 221–263.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Talagrand, Lecture Notes in Math., 1900, Springer, Berlin, 2007, 63–80.

    Google Scholar 

  15. D. Panchenko and M. Talagrand, Ann. Probab. 35, 2007, no 6, 2321–2355.

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Chatterjeee, Chaos, concentration, and multiple valleys, arXiv:0810.4221 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Rizzo, T. (2009). Chaos in Mean-field Spin-glass Models. In: de Monvel, A.B., Bovier, A. (eds) Spin Glasses: Statics and Dynamics. Progress in Probability, vol 62. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-9891-0_6

Download citation

Publish with us

Policies and ethics