Advertisement

Hankel Minors and Pade Approximations

  • Eugene Tyrtyshnikov
Chapter
Part of the Operator Theory: Advances and Applications book series (OT, volume 199)

Abstract

Algebraic Pade theory is presented in a complete, brief and clear way as a corollary of one property of a sequence of nonzero leading minors in a semi-infinite Hankel matrix associated with a formal series.

Mathematics Subject Classification (2000)

15A12 65F10 65F15 

Keywords

Pade approximants Hankel matrices Toeplitz matrices rational approximations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.A. Baker, Jr. and P. Graves-Morris, Pade Approximants, Addison-Wesley Publishing Co., 1981.Google Scholar
  2. [2]
    A. Bultheel, M. Van Barel, Linear Algebra, Rational Approximation and Orthogonal Polynomials, Studies in Computational Mathematics, vol. 6, North-Holland, Elsevier Science, Amsterdam, 1997.Google Scholar
  3. [3]
    A. Bultheel, M. Van Barel, Pade techniques for model reduction in linear system theory: a survey, J. Comput. Appl. Math., 14, pp. 401–438 (1986).CrossRefMathSciNetGoogle Scholar
  4. [4]
    I. Gohberg, A.A. Semencul, On inversion of finite-section Toeplitz matrices and their continuous analogues, Matem. Issled. (Russian), Vol.7, No. 2, pp. 201–224 (1972).zbMATHMathSciNetGoogle Scholar
  5. [5]
    G. Heinig, K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators, Academie-Verlag, Berlin, 1984.zbMATHGoogle Scholar
  6. [6]
    I.C. Iohvidov, Hankel and Toeplitz Matrices and Forms, Nauka, 1984.Google Scholar
  7. [7]
    E.M. Nikishin and V.N. Sorokin, Rational approximations and orthogonality, Nauka, 1988.Google Scholar
  8. [8]
    E.E. Tyrtyshnikov, Toeplitz Matrices, Some Analogs and Applications, OVM RAN, 1989.Google Scholar
  9. [9]
    E.E. Tyrtyshnikov, Euclidean Algorithm and Hankel Matrices, Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, vol. 936, Melville, New York, pp. 27–30 (2007).CrossRefGoogle Scholar
  10. [10]
    V.V. Voevodin and E.E. Tyrtyshnikov, Computational Processes with Toeplitz Matrices, Nauka, 1987.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  • Eugene Tyrtyshnikov
    • 1
  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations