Advertisement

Georg Heinig November 24, 1947 - May 10, 2005 A Personal Memoir and Appreciation

  • Karla Rost
Part of the Operator Theory: Advances and Applications book series (OT, volume 199)

Abstract

On May 10, 2005, Georg Heinig, an excellent mathematician died unexpectedly at the age of 57. He was a world leader in the field of structured matrices. As associate editor of the journal Linear Algebra and its Applications since his appointment in 1991 he contributed much to the journal’s success by his valuable and extensive work. In what follows I want to try to capture some aspects of this mathematical life and his personality.

Keywords

Linear Algebra Fast Algorithm Structure Matrice Toeplitz Matrix Toeplitz Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BS]
    Toeplitz Matrices and Singular Integral Equations: The Bernd Silbermann Anniversary Volume (Pobershau, 2001), eds. A. Böttcher, I. Gohberg, P. Junghanns, Operator Theory: Advances and Applications, Vol. 135, Birkhäuser, Basel, 2002.Google Scholar
  2. [SP]
    Problems and Methods in Mathematical Physics: The Siegfried Prössdorf Memorial Vol. (Proceed. of the 11 TMP Chemnitz, 1999), eds. J. Elschner, I. Gohberg, B. Silbermann, Operator Theory: Advances and Applications, Vol. 121, Birkhäuser, Basel, 2001.Google Scholar
  3. [IG]
    The Gohberg Anniversary Collection, Vol. I (Calgary, 1988), eds. H. Dym, S. Goldberg, M.A. Kaashoek, P. Lancaster, Operator Theory: Advances and Applications, Vol. 40, Birkhäuser, Basel, 1989.Google Scholar

List of Georg Heinig’s (refereed) publications (chronologically ordered, including one monograph [85, 88], two edited proceedings [14, 33], and one book translation [30])

  1. [1]
    G. Heinig, K. Rost, Split algorithms for centrosymmetric Toeplitz-plus-Hankel matrices with arbitrary rank profile, 129–146, Oper. Theory Adv. Appl., 171, Birkhäuser, Basel, 2007.Google Scholar
  2. [2]
    G. Heinig, K. Rost, Schur-type algorithms for the solution of Hermitian Toeplitz systems via factorization, 233–252, Oper. Theory Adv. Appl., 160, Birkhäuser, Basel, 2005.CrossRefGoogle Scholar
  3. [3]
    G. Codevico, G. Heinig, M. Van Barel, A superfast solver for real symmetric Toeplitz systems using real trigonometric transformations. Numer. Linear Algebra Appl. 12 (2005), 699–713.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    G. Heinig, K. Rost, Fast “split” algorithms for Toeplitz and Toeplitz-plus-Hankel matrices with arbitrary rank profile. Proceedings of the International Conference on Mathematics and its Applications (ICMA 2004), 285–312, Kuwait, 2005.Google Scholar
  5. [5]
    G. Heinig, K. Rost, Split algorithms for symmetric Toeplitz matrices with arbitrary rank profile. Numer. Linear Algebra Appl. 12 (2005), no. 2-3, 141–151.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    G. Heinig, K. Rost, Split algorithms for Hermitian Toeplitz matrices with arbitrary rank profile. Linear Algebra Appl. 392 (2004), 235–253.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    G. Heinig, Fast algorithms for Toeplitz least squares problems. Current trends in operator theory and its applications. 167–197, Oper. Theory Adv. Appl., 149, Birkhäuser, Basel, 2004.Google Scholar
  8. [8]
    G. Heinig, K. Rost, Split algorithms for skewsymmetric Toeplitz matrices with arbitrary rank profile. Theoret. Comput. Sci. 315 (2004), no. 2-3, 453–468.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    G. Heinig, K. Rost, New fast algorithms for Toeplitz-plus-Hankel matrices. SIAM J. Matrix Anal. Appl. 25 (2003), no. 3, 842–857.MathSciNetCrossRefGoogle Scholar
  10. [10]
    G. Heinig, K. Rost, Fast algorithms for centrosymmetric and centro-skewsymmetric Toeplitz-plus-Hankel matrices. International Conference on Numerical Algorithms, Vol. I (Marrakesh, 2001), Numer. Algorithms 33 (2003), no. 1-4, 305–317.MATHMathSciNetGoogle Scholar
  11. [11]
    G. Heinig, Inversion of Toeplitz-plus-Hankel matrices with arbitrary rank profile. Fast algorithms for structured matrices: theory and applications (South Hadley, MA, 2001), 75-89, Contemp. Math., 323, Amer. Math. Soc., Providence, RI, 2003.Google Scholar
  12. [12]
    M. Van Barel, G. Heinig, P. Kravanja, A superfast method for solving Toeplitz linear least squares problems. Special issue on structured matrices: analysis, algorithms and applications (Cortona, 2000), Linear Algebra Appl. 366 (2003), 441–457.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    G. Heinig, K. Rost, Centrosymmetric and centro-skewsymmetric Toeplitz-plus-Hankel matrices and Bezoutians. Special issue on structured matrices: analysis, algorithms and applications (Cortona, 2000), Linear Algebra Appl. 366 (2003), 257–281.MATHMathSciNetCrossRefGoogle Scholar
  14. [14] Special issue on structured matrices: analysis, algorithms and applications. Papers from the workshop held in Cortona, September 21-28, 2000. eds. D. Bini, G. Heinig, E. Tyrtyshnikov. Linear Algebra Appl. 366 (2003). Elsevier Science B.V., Amsterdam, 2003.Google Scholar
  15. [15]
    G. Heinig, K. Rost, Fast algorithms for skewsymmetric Toeplitz matrices. Toeplitz matrices and singular integral equations (Pobershau, 2001), 193-208, Oper. Theory Adv. Appl., 135, Birkhäuser, Basel, 2002.Google Scholar
  16. [16]
    G. Heinig, On the reconstruction of Toeplitz matrix inverses from columns. Linear Algebra Appl. 350 (2002), 199–212.MATHMathSciNetGoogle Scholar
  17. [17]
    G. Heinig, K. Rost, Centro-symmetric and centro-skewsymmetric Toeplitz matrices and Bezoutians. Special issue on structured and infinite systems of linear equations. Linear Algebra Appl. 343/344 (2002), 195–209.MathSciNetCrossRefGoogle Scholar
  18. [18]
    G. Heinig, Kernel structure of Toeplitz-plus-Hankel matrices. Linear Algebra Appl. 340 (2002), 1–13.MATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    G. Heinig, Fast and superfast algorithms for Hankel-like matrices related to orthogonal polynomials. Numerical analysis and its applications (Rousse, 2000), 385-392, Lecture Notes in Comput. Sci., 1988, Springer, Berlin, 2001.Google Scholar
  20. [20]
    M. VanBarel, G. Heinig, P. Kravanja, An algorithm based on orthogonal polynomial vectors for Toeplitz least squares problems. Numerical analysis and its applications (Rousse, 2000), 27-34, Lecture Notes in Comput. Sci., 1988, Springer, Berlin, 2001.Google Scholar
  21. [21]
    M. VanBarel, G. Heinig, P. Kravanja, A stabilized superfast solver for nonsymmetric Toeplitz systems. SIAM J. Matrix Anal. Appl. 23 (2001), no. 2, 494–510.MATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    G. Heinig, K. Rost, Efficient inversion formulas for Toeplitz-plus-Hankel matrices using trigonometric transformations. Structured matrices in mathematics, computer science, and engineering, II (Boulder, CO, 1999), 247-264, Contemp. Math., 281, Amer. Math. Soc., Providence, RI, 2001.Google Scholar
  23. [23]
    G. Heinig, Stability of Toeplitz matrix inversion formulas. Structured matrices in mathematics, computer science, and engineering, II (Boulder, CO, 1999), 101-116, Contemp. Math., 281, Amer. Math. Soc., Providence, RI, 2001.Google Scholar
  24. [24]
    G. Heinig, V. Olshevsky, The Schur algorithm for matrices with Hessenberg displacement structure. Structured matrices in mathematics, computer science, and engineering, II (Boulder, CO, 1999), 3-15, Contemp. Math., 281, Amer. Math. Soc., Providence, RI, 2001.Google Scholar
  25. [25]
    G. Heinig, Not every matrix is similar to a Toeplitz matrix. Proceedings of the Eighth Conference of the International Linear Algebra Society (Barcelona, 1999). Linear Algebra Appl. 332/334 (2001), 519–531.MathSciNetCrossRefGoogle Scholar
  26. [26]
    G. Heinig, Chebyshev-Hankel matrices and the splitting approach for centrosymmetric Toeplitz-plus-Hankel matrices. Linear Algebra Appl. 327 (2001), no. 1-3, 181–196.MATHMathSciNetCrossRefGoogle Scholar
  27. [27]
    S. Feldmann, G. Heinig, Partial realization for singular systems in standard form. Linear Algebra Appl. 318 (2000), no. 1-3, 127–144.MATHMathSciNetCrossRefGoogle Scholar
  28. [28]
    G. Heinig, K. Rost, Representations of inverses of real Toeplitz-plus-Hankel matrices using trigonometric transformations. Large-scale scientific computations of engineering and environmental problems, II (Sozopol, 1999), 80-86, Notes Numer. Fluid Mech., 73, Vieweg, Braunschweig, 2000.Google Scholar
  29. [29]
    M. Van Barel, G. Heinig, P. Kravanja, Least squares solution of Toeplitz systems based on orthogonal polynomial vectors. Advanced Signal Processing Algorithms, Architectures, and Implementations X. ed. F.T. Luk, Vol 4116, Proceedings of SPIE (2000), 167–172.Google Scholar
  30. [30]
    V. Maz’ya, S. Nazarov, B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vol. I. Translated from the German by Georg Heinig and Christian Posthoff. Operator Theory: Advances and Applications, 111. Birkhäuser, Basel, 2000.Google Scholar
  31. [31]
    G. Heinig, K. Rost, Hartley transform representations of symmetric Toeplitz matrix inverses with application to fast matrix-vector multiplication. SIAMJ. Matrix Anal. Appl. 22 (2000), no. 1, 86–105.MATHMathSciNetCrossRefGoogle Scholar
  32. [32]
    G. Heinig, K. Rost, Hartley transform representations of inverses of real Toeplitzplus-Hankel matrices. Proceedings of the International Conference on Fourier Analysis and Applications (Kuwait, 1998). Numer. Funct. Anal. Optim. 21 (2000), no. 1-2, 175–189.MATHMathSciNetCrossRefGoogle Scholar
  33. [33]
    Proceedings of the International Conference on Fourier Analysis and Applications. Held at Kuwait University, Kuwait, May 3-6, 1998, Eds. F.Al-Musallam, A.Böttcher, P.Butzer, G.Heinig, Vu Kim Tuan. Numer. Funct. Anal. Optim. 21 (2000), no. 1-2. Marcel Dekker, Inc., Monticello, NY, 2000.Google Scholar
  34. [34]
    G. Heinig, F. Al-Musallam, Hermite’s formula for vector polynomial interpolation with applications to structured matrices. Appl. Anal. 70 (1999), no. 3-4, 331–345.MATHMathSciNetCrossRefGoogle Scholar
  35. [35]
    S. Feldmann, G. Heinig, Parametrization of minimal rank block Hankel matrix extensions and minimal partial realizations. Integral Equations Operator Theory 33 (1999), no. 2, 153–171.MATHMathSciNetCrossRefGoogle Scholar
  36. [36]
    G. Heinig, K. Rost, DFT representations of Toeplitz-plus-Hankel Bezoutians with application to fast matrix-vector multiplication. ILAS Symposium on Fast Algorithms for Control, Signals and Image Processing (Winnipeg, MB, 1997). Linear Algebra Appl. 284 (1998), no. 1-3, 157–175.MATHMathSciNetCrossRefGoogle Scholar
  37. [37]
    G. Heinig, Matrices with higher-order displacement structure. Linear Algebra Appl. 278 (1998), no. 1-3, 295–301.MATHMathSciNetCrossRefGoogle Scholar
  38. [38]
    G. Heinig, A. Bojanczyk, Transformation techniques for Toeplitz and Toeplitz-plus-Hankel matrices. II. Algorithms. Linear Algebra Appl. 278 (1998), no. 1-3, 11–36.MATHMathSciNetCrossRefGoogle Scholar
  39. [39]
    G. Heinig, Properties of “derived” Hankel matrices. Recent progress in operator theory (Regensburg, 1995), 155-170, Oper. Theory Adv. Appl., 103, Birkhäuser, Basel, 1998.Google Scholar
  40. [40]
    G. Heinig, K. Rost, Representations of Toeplitz-plus-Hankel matrices using trigonometric transformations with application to fast matrix-vector multiplication. Proceedings of the Sixth Conference of the International Linear Algebra Society (Chemnitz, 1996). Linear Algebra Appl. 275/276 (1998), 225–248.MathSciNetCrossRefGoogle Scholar
  41. [41]
    G. Heinig, F.Al-Musallam, Lagrange’s formula for tangential interpolation with application to structured matrices. Integral Equations Operator Theory 30 (1998), no. 1, 83–100.MATHMathSciNetCrossRefGoogle Scholar
  42. [42]
    G. Heinig, Generalized Cauchy-Vandermonde matrices. Linear Algebra Appl. 270 (1998), 45–77.MATHMathSciNetCrossRefGoogle Scholar
  43. [43]
    G. Heinig, The group inverse of the transformation S(X) = 3DAXXB. Linear Algebra Appl. 257 (1997), 321–342.MATHMathSciNetCrossRefGoogle Scholar
  44. [44]
    G. Heinig, A. Bojanczyk, Transformation techniques for Toeplitz and Toeplitz-plus-Hankel matrices. I. Transformations. Proceedings of the Fifth Conference of the International Linear Algebra Society (Atlanta, GA, 1995). Linear Algebra Appl. 254 (1997), 193–226.MATHMathSciNetCrossRefGoogle Scholar
  45. [45]
    G. Heinig, L.A. Sakhnovich, I.F. Tidniuk, Paired Cauchy matrices. Linear Algebra Appl. 251 (1997), 189–214.MATHMathSciNetCrossRefGoogle Scholar
  46. [46]
    G. Heinig, Solving Toeplitz systems after extension and transformation. Toeplitz matrices: structures, algorithms and applications (Cortona, 1996). Calcolo 33 (1998), no. 1-2, 115–129.MathSciNetGoogle Scholar
  47. [47]
    S. Feldmann, G. Heinig, On the partial realization problem for singular systems. Proceedings of the 27th Annual Iranian Mathematics Conference (Shiraz, 1996), 79–100, Shiraz Univ., Shiraz, 1996.Google Scholar
  48. [48]
    S. Feldmann, G. Heinig, Vandermonde factorization and canonical representations of block Hankel matrices. Proceedings of the Fourth Conference of the International Linear Algebra Society (ILAS) (Rotterdam, 1994). Linear Algebra Appl. 241/243 (1996), 247–278.MathSciNetCrossRefGoogle Scholar
  49. [49]
    G. Heinig, Inversion of generalized Cauchy matrices and other classes of structured matrices. Linear algebra for signal processing (Minneapolis, MN, 1992), 63–81, IMA Vol. Math. Appl., 69, Springer, New York, 1995.Google Scholar
  50. [50]
    G. Heinig, Matrix representations of Bezoutians. Special issue honoring Miroslav Fiedler and Vlastimil Pt’ak. Linear Algebra Appl. 223/224 (1995), 337–354.MathSciNetCrossRefGoogle Scholar
  51. [51]
    G. Heinig, K. Rost, Recursive solution of Cauchy-Vandermonde systems of equations. Linear Algebra Appl. 218 (1995), 59–72.MATHMathSciNetCrossRefGoogle Scholar
  52. [52]
    G. Heinig, Generalized inverses of Hankel and Toeplitz mosaic matrices. Linear Algebra Appl. 216 (1995), 43–59.MATHMathSciNetCrossRefGoogle Scholar
  53. [53]
    G. Heinig, F. Hellinger, Displacement structure of generalized inverse matrices. Generalized inverses (1993). Linear Algebra Appl. 211 (1994), 67–83.MATHMathSciNetCrossRefGoogle Scholar
  54. [54]
    G. Heinig, F. Hellinger, The finite section method for Moore-Penrose inversion of Toeplitz operators. Integral Equations Operator Theory 19 (1994), no. 4, 419–446.MATHMathSciNetCrossRefGoogle Scholar
  55. [55]
    G. Heinig, F. Hellinger, Displacement structure of pseudoinverses. Second Conference of the International Linear Algebra Society (ILAS) (Lisbon, 1992). Linear Algebra Appl. 197/198 (1994), 623–649.MathSciNetCrossRefGoogle Scholar
  56. [56]
    S. Feldmann, G. Heinig, Uniqueness properties of minimal partial realizations. Linear Algebra Appl. 203/204 (1994), 401–427.MathSciNetCrossRefGoogle Scholar
  57. [57]
    G. Heinig, F. Hellinger, Moore-Penrose inversion of square Toeplitz matrices. SIAM J. Matrix Anal. Appl. 15 (1994), no. 2, 418–450.MATHMathSciNetCrossRefGoogle Scholar
  58. [58]
    A.W. Boja’nczyk, G. Heinig, A multi-step algorithm for Hankel matrices. J. Complexity 10 (1994), no. 1, 142–164.MATHMathSciNetCrossRefGoogle Scholar
  59. [59]
    G. Heinig, F. Hellinger, On the Bezoutian structure of the Moore-Penrose inverses of Hankel matrices. SIAM J. Matrix Anal. Appl. 14 (1993), no. 3, 629–645.MATHMathSciNetCrossRefGoogle Scholar
  60. [60]
    T. Finck, G. Heinig, K. Rost, An inversion formula and fast algorithms for Cauchy-Vandermonde matrices. Linear Algebra Appl. 183 (1993), 179–191.MATHMathSciNetCrossRefGoogle Scholar
  61. [61]
    G. Heinig, P. Jankowski, Kernel structure of block Hankel and Toeplitz matrices and partial realization. Linear Algebra Appl. 175 (1992), 1–30.MATHMathSciNetCrossRefGoogle Scholar
  62. [62]
    G. Heinig, Inverse problems for Hankel and Toeplitz matrices. Linear Algebra Appl. 165 (1992), 1–23.MATHMathSciNetCrossRefGoogle Scholar
  63. [63]
    G. Heinig, Fast algorithms for structured matrices and interpolation problems. Algebraic computing in control (Paris, 1991), 200-211, Lecture Notes in Control and Inform. Sci., 165, Springer, Berlin, 1991.Google Scholar
  64. [64]
    G. Heinig, On structured matrices, generalized Bezoutians and generalized Christoffel-Darboux formulas. Topics in matrix and operator theory (Rotterdam, 1989), 267-281, Oper. Theory Adv. Appl., 50, Birkhäuser, Basel, 1991.Google Scholar
  65. [65]
    G. Heinig, Formulas and algorithms for block Hankel matrix inversion and partial realization. Signal processing, scattering and operator theory, and numerical methods (Amsterdam, 1989), 79–90, Progr. Systems Control Theory, 5, Birkhäuser Boston, Boston, MA, 1990.Google Scholar
  66. [66]
    G. Heinig, P. Jankowski, Parallel and superfast algorithms for Hankel systems of equations. Numer. Math. 58 (1990), no. 1, 109–127.MATHMathSciNetCrossRefGoogle Scholar
  67. [67]
    G. Heinig, P. Jankowski, Fast algorithms for the solution of general Toeplitz systems. Wiss. Z. Tech. Univ. Karl-Marx-Stadt 32 (1990), no. 1, 12–17.MathSciNetGoogle Scholar
  68. [68]
    G. Heinig, K. Rost, Matrices with displacement structure, generalized Bezoutians, and Moebius transformations. The Gohberg anniversary collection, Vol. I (Calgary, AB, 1988), 203-230, Oper. Theory Adv. Appl., 40, Birkhäuser, Basel, 1989.Google Scholar
  69. [69]
    G. Heinig, K. Rost, Inversion of matrices with displacement structure. Integral Equations Operator Theory 12 (1989), no. 6, 813–834.MATHMathSciNetCrossRefGoogle Scholar
  70. [70]
    G. Heinig, W. Hoppe, K. Rost, Structured matrices in interpolation and approximation problems. Wiss. Z. Tech. Univ. Karl-Marx-Stadt 31 (1989), no. 2, 196–202.MATHMathSciNetGoogle Scholar
  71. [71]
    G. Heinig, K. Rost, Matrix representations of Toeplitz-plus-Hankel matrix inverses. Linear Algebra Appl. 113 (1989), 65–78.MATHMathSciNetCrossRefGoogle Scholar
  72. [72]
    G. Heinig, T. Amdeberhan, On the inverses of Hankel and Toeplitz mosaic matrices. Seminar Analysis (Berlin, 1987/1988), 53–65, Akademie-Verlag, Berlin, 1988.Google Scholar
  73. [73]
    G. Heinig, P. Jankowski, K. Rost, Tikhonov regularisation for block Toeplitz matrices. Wiss. Z. Tech. Univ. Karl-Marx-Stadt 30 (1988), no. 1, 41–45.MathSciNetGoogle Scholar
  74. [74]
    G. Heinig, K. Rost, On the inverses of Toeplitz-plus-Hankel matrices. Linear Algebra Appl. 106 (1988), 39–52.MATHMathSciNetCrossRefGoogle Scholar
  75. [75]
    G. Heinig, P. Jankowski, K. Rost, Fast inversion algorithms of Toeplitz-plus-Hankel matrices. Numer. Math. 52 (1988), no. 6, 665–682.MATHMathSciNetCrossRefGoogle Scholar
  76. [76]
    G. Heinig, Structure theory and fast inversion of Hankel striped matrices. I. Integral Equations Operator Theory 11 (1988), no. 2, 205–229.MATHMathSciNetCrossRefGoogle Scholar
  77. [77]
    G. Heinig, K. Rost, Inversion of generalized Toeplitz-plus-Hankel matrices. Wiss. Z. Tech. Univ. Karl-Marx-Stadt 29 (1987), no. 2, 209–211.MATHMathSciNetGoogle Scholar
  78. [78]
    G. Heinig, U. Jungnickel, Hankel matrices generated by Markov parameters, Hankel matrix extension, partial realization, and Pad’e-approximation. Operator theory and systems (Amsterdam, 1985), 231–253, Oper. Theory Adv. Appl., 19, Birkhäuser, Basel, 1986.Google Scholar
  79. [79]
    G. Heinig, U. Jungnickel, Lyapunov equations for companion matrices. Linear Algebra Appl. 76 (1986), 137–147.MATHMathSciNetCrossRefGoogle Scholar
  80. [80]
    G. Heinig, U. Jungnickel, Hankel matrices generated by the Markov parameters of rational functions. Linear Algebra Appl. 76 (1986), 121–135.MATHMathSciNetCrossRefGoogle Scholar
  81. [81]
    G. Heinig, Partial indices for Toeplitz-like operators. Integral Equations Operator Theory 8 (1985), no. 6, 805–824.MATHMathSciNetCrossRefGoogle Scholar
  82. [82]
    G. Heinig, K. Rost, Fast inversion of Toeplitz-plus-Hankel matrices. Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt 27 (1985), no. 1, 66–71.MATHMathSciNetGoogle Scholar
  83. [83]
    G. Heinig, U. Jungnickel, On the Bezoutian and root localization for polynomials. Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt 27 (1985), no. 1, 62–65.MATHMathSciNetGoogle Scholar
  84. [84]
    G. Heinig, B. Silbermann, Factorization of matrix functions in algebras of bounded functions. Spectral theory of linear operators and related topics (Timisoara/Herculane, 1983), 157–177, Oper. Theory Adv. Appl., 14, Birkhäuser, Basel, 1984.Google Scholar
  85. [85]
    G. Heinig, K. Rost, Algebraic methods for Toeplitz-like matrices and operators. Oper. Theory Adv. Appl., 13, Birkhäuser, Basel, 1984.Google Scholar
  86. [86]
    G. Heinig, U. Jungnickel, On the Routh-Hurwitz and Schur-Cohn problems for matrix polynomials and generalized Bezoutians. Math. Nachr. 116 (1984), 185–196.MATHMathSciNetCrossRefGoogle Scholar
  87. [87]
    G. Heinig, K. Rost, Schnelle Invertierungsalgorithmen für einige Klassen von Matrizen. (German) [Fast inversion algorithms for some classes of matrices] Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt 26 (1984), no. 2, 235–241.MATHMathSciNetGoogle Scholar
  88. [88]
    G. Heinig, K. Rost, Algebraic methods for Toeplitz-like matrices and operators. Mathematical Research, 19, Akademie-Verlag, Berlin, 1984.Google Scholar
  89. [89]
    G. Heinig, K. Rost, Invertierung von Toeplitzmatrizen und ihren Verallgemeinerungen. I. Die Methode der UV-Reduktion. (German) [Inversion of Toeplitz matrices and their generalizations. I. The method of UV-reduction] Beiträge Numer. Math. No. 12 (1984), 55–73.MathSciNetGoogle Scholar
  90. [90]
    G. Heinig, Generalized resultant operators and classification of linear operator pencils up to strong equivalence. Functions, series, operators, Vol. I, II (Budapest, 1980), 611–620, Colloq. Math. Soc. J’anos Bolyai, 35, North-Holland, Amsterdam, 1983.Google Scholar
  91. [91]
    G. Heinig, Inversion of Toeplitz and Hankel matrices with singular sections. Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt 25 (1983), no. 3, 326–333.MATHMathSciNetGoogle Scholar
  92. [92]
    G. Heinig, U. Jungnickel, Zur Lösung von Matrixgleichungen der Form AXXB = 3DC. (German) [On the solution of matrix equations of the form AXXB = 3DC] Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt 23 (1981), no. 4, 387–393.MATHMathSciNetGoogle Scholar
  93. [93]
    G. Heinig, Linearisierung und Realisierung holomorpher Operatorfunktionen. (German) Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt 22 (1980), no. 5, 453–459.MATHMathSciNetGoogle Scholar
  94. [94]
    G. Heinig, K. Rost, Invertierung einiger Klassen von Matrizen und Operatoren. I. Endliche Toeplitzmatrizen und ihre Verallgemeinerungen. (German) [Inversion of some classes of matrices and operators. I. Finite Toeplitz matrices and their generalizations] Wissenschaftliche Informationen [Scientific Information], 12, Technische Hochschule Karl-Marx-Stadt, Sektion Mathematik, Karl-Marx-Stadt, 1979.Google Scholar
  95. [95]
    G. Heinig, Bezoutiante, Resultante und Spektralverteilungsprobleme für Operatorpolynome. (German) Math. Nachr. 91 (1979), 23–43.MATHMathSciNetCrossRefGoogle Scholar
  96. [96]
    G. Heinig, Transformationen von Toeplitz-und Hankelmatrizen. (German) Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt 21 (1979), no. 7, 859–864.MATHMathSciNetGoogle Scholar
  97. [97]
    G. Heinig, Invertibility of singular integral operators. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 96 (1979), no. 1, 29–32.MATHMathSciNetGoogle Scholar
  98. [98]
    G. Heinig, Ü ber ein kontinuierliches Analogon der Begleitmatrix eines Polynoms und die Linearisierung einiger Klassen holomorpher Operatorfunktionen. (German) Beiträge Anal. 13 (1979), 111–126.MathSciNetGoogle Scholar
  99. [99]
    G. Heinig, Verallgemeinerte Resultantenbegriffe bei beliebigen Matrixbüscheln. II. Gemischter Resultantenoperator. (German) Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt 20 (1978), no. 6, 701–703.MATHMathSciNetGoogle Scholar
  100. [100]
    G. Heinig, Verallgemeinerte Resultantenbegriffe bei beliebigen Matrixbüscheln. I. Einseitiger Resultantenoperator. (German) Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt 20 (1978), no. 6, 693–700.MATHMathSciNetGoogle Scholar
  101. [101]
    G. Heinig, Endliche Toeplitzmatrizen und zweidimensionale Wiener-Hopf-Operatoren mit homogenem Symbol. II. Über die normale Auflösbarkeit einer Klasse zweidimensionaler Wiener-Hopf Operatoren. (German) Math. Nachr. 82 (1978), 53–68.MATHMathSciNetCrossRefGoogle Scholar
  102. [102]
    G. Heinig, Endliche Toeplitzmatrizen und zweidimensionale Wiener-Hopf-Operatoren mit homogenem Symbol. I. Eigenschaften endlicher Toeplitzmatrizen. (German) Math. Nachr. 82 (1978), 29–52.MATHMathSciNetCrossRefGoogle Scholar
  103. [103]
    G. Heinig, K. Rost, Über homogene Gleichungen vom Faltungstyp auf einem endlichen Intervall. (German) Demonstratio Math. 10 (1977), no. 3-4, 791–806.MATHMathSciNetGoogle Scholar
  104. [104]
    G. Heinig, Über Block-Hankelmatrizen und den Begriff der Resultante für Matrixpolynome. (German) Wiss. Z. Techn. Hochsch. Karl-Marx-Stadt 19 (1977), no. 4, 513–519.MATHMathSciNetGoogle Scholar
  105. [105]
    G. Heinig, The notion of Bezoutian and of resultant for operator pencils. (Russian) Funkcional. Anal. i Priložen. 11 (1977), no. 3, 94–95.MATHMathSciNetGoogle Scholar
  106. [106]
    I.C. Gohberg, G. Heinig, The resultant matrix and its generalizations. II. The continual analogue of the resultant operator. (Russian) Acta Math. Acad. Sci. Hungar. 28 (1976), no. 3-4, 189–209.MATHMathSciNetCrossRefGoogle Scholar
  107. [107]
    G. Heinig, Periodische Jacobimatrizen im entarteten Fall. (German)Wiss. Z. Techn. Hochsch. Karl-Marx-Stadt 18 (1976), no. 4, 419–423.MATHMathSciNetGoogle Scholar
  108. [108]
    G. Heinig, Über die Invertierung und das Spektrum von singulären Integraloperatoren mit Matrixkoeffizienten. (German) 5. Tagung über Probleme und Methoden der Mathematischen Physik (Techn. Hochschule Karl-Marx-Stadt, Karl-Marx-Stadt, 1975), Heft 1, 52–59. Wiss. Schr. Techn. Hochsch. Karl-Marx-Stadt, Techn. Hochsch., Karl-Marx-Stadt, 1975.Google Scholar
  109. [109]
    I.C. Gohberg, G. Heinig, On matrix integral operators on a finite interval with kernels depending on the difference of the arguments. (Russian) Rev. Roumaine Math. Pures Appl. 20 (1975), 55–73.MathSciNetGoogle Scholar
  110. [110]
    I.C. Gohberg, G. Heinig, The resultant matrix and its generalizations. I. The resultant operator for matrix polynomials. (Russian) Acta Sci. Math. (Szeged) 37 (1975), 41–61.MATHMathSciNetGoogle Scholar
  111. [111]
    I.C. Gohberg, G. Heinig, Inversion of finite Toeplitz matrices consisting of elements of a noncommutative algebra. (Russian) Rev. Roumaine Math. Pures Appl. 19 (1974), 623–663.MATHMathSciNetGoogle Scholar
  112. [112]
    G. Heinig, The inversion and the spectrum of matrix Wiener-Hopf operators. (Russian) Mat. Sb. (N.S.) 91(133) (1973), 253–266.MathSciNetGoogle Scholar
  113. [113]
    G. Heinig, The inversion and the spectrum of matrix-valued singular integral operators. (Russian) Mat. Issled. 8 (1973), no. 3(29), 106–121.MATHMathSciNetGoogle Scholar
  114. [114]
    I.C. Gohberg, G. Heinig, The inversion of finite Toeplitz matrices. (Russian) Mat. Issled. 8 (1973), no. 3(29), 151–156.MATHMathSciNetGoogle Scholar
  115. [115]
    G. Heinig, Inversion of periodic Jacobi matrices. (Russian) Mat. Issled. 8 (1973), no. 1(27), 180–200.MathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  • Karla Rost
    • 1
  1. 1.Department of MathematicsChemnitz University of TechnologyChemnitzGermany

Personalised recommendations