Skip to main content

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 199))

Abstract

The paper analyzes a two-grid and a multigrid method for matrices belonging to the DCT-III algebra and generated by a polynomial symbol. The aim is to prove that the convergence rate of the considered multigrid method (V-cycle) is constant independent of the size of the given matrix. Numerical examples from differential and integral equations are considered to illustrate the claimed convergence properties.

The work of the author was partially supported by MIUR, grant number 2006017542.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aricò, M. Donatelli, A V-cycle multigrid for multilevel matrix algebras: proof of optimality. Numer. Math. 105 (2007), no. 4, 511–547 (DOI 10.1007/s00211-006-0049-7).

    Google Scholar 

  2. A. Aricò, M. Donatelli, S. Serra-Capizzano, V-cycle optimal convergence for certain (multilevel) structured linear systems. SIAM J. Matrix Anal. Appl. 26 (2004), no. 1, 186–214.

    Article  MATH  MathSciNet  Google Scholar 

  3. O. Axelsson, M. Neytcheva, The algebraic multilevel iteration methods — theory and applications. In Proceedings of the Second International Colloquium on Numerical Analysis (Plovdiv, 1993), 13–23, VSP, 1994.

    Google Scholar 

  4. R.H. Chan, T.F. Chan, C. Wong, Cosine transform based preconditioners for total variation minimization problems in image processing. In Iterative Methods in Linear Algebra, II, V3, IMACS Series in Computational and Applied Mathematics, Proceedings of the Second IMACS International Symposium on Iterative Methods in Linear Algebra, Bulgaria, 1995, 311–329.

    Google Scholar 

  5. R.H. Chan, M. Donatelli, S. Serra-Capizzano, C. Tablino-Possio, Application of multigrid techniques to image restoration problems. In Proceedings of SPIE-Session: Advanced Signal Processing: Algorithms, Architectures, and Implementations XII, Vol. 4791 (2002), F. Luk Ed., 210–221.

    Google Scholar 

  6. R.H. Chan, M.K. Ng, Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38 (1996), no. 3, 427–482.

    Google Scholar 

  7. R.H. Chan, S. Serra-Capizzano, C. Tablino-Possio, Two-grid methods for banded linear systems from DCT III algebra. Numer. Linear Algebra Appl. 12 (2005), no. 2-3, 241–249.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Fiorentino, S. Serra-Capizzano, Multigrid methods for Toeplitz matrices. Calcolo 28 (1991), no. 3-4, 283–305.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Fiorentino, S. Serra-Capizzano, Multigrid methods for symmetric positive definite block Toeplitz matrices with nonnegative generating functions. SIAM J. Sci. Comput. 17 (1996), no. 5, 1068–1081.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Fischer, T. Huckle, Multigrid methods for anisotropic BTTB systems. Linear Algebra Appl. 417 (2006), no. 2-3, 314–334.

    Article  MATH  MathSciNet  Google Scholar 

  11. W. Hackbusch, Multigrid methods and applications. Springer Series in Computational Mathematics, 4. Springer-Verlag, 1985.

    Google Scholar 

  12. T. Huckle, J. Staudacher, Multigrid preconditioning and Toeplitz matrices. Electron. Trans. Numer. Anal. 13 (2002), 81–105.

    MATH  MathSciNet  Google Scholar 

  13. T. Huckle, J. Staudacher, Multigrid methods for block Toeplitz matrices with small size blocks. BIT 46 (2006), no. 1, 61–83.

    Article  MATH  MathSciNet  Google Scholar 

  14. X.Q. Jin, Developments and applications of block Toeplitz iterative solvers. Combinatorics and Computer Science, 2. Kluwer Academic Publishers Group, Dordrecht; Science Press, Beijing, 2002.

    Google Scholar 

  15. D.G. Luenberger, Introduction to Dynamic Systems: Theory, Models, and Applications, John Wiley & Sons Inc., 1979.

    Google Scholar 

  16. M.K. Ng, Iterative methods for Toeplitz systems. Numerical Mathematics and Scientific Computation. Oxford University Press, 2004.

    Google Scholar 

  17. M.K. Ng, R.H. Chan, T.F. Chan, A.M. Yip, Cosine transform preconditioners for high resolution image reconstruction. Conference Celebrating the 60th Birthday of Robert J. Plemmons (Winston-Salem, NC, 1999). Linear Algebra Appl. 316 (2000), no. 1-3, 89–104.

    Article  MATH  MathSciNet  Google Scholar 

  18. M.K. Ng, R.H. Chan, W.C. Tang, A fast algorithm for deblurring models with Neumann boundary conditions. SIAM J. Sci. Comput. 21 (1999), no. 3, 851–866.

    Article  MATH  MathSciNet  Google Scholar 

  19. M.K. Ng, S. Serra-Capizzano, C. Tablino-Possio. Numerical behaviour of multigrid methods for symmetric sinc-Galerkin systems. Numer. Linear Algebra Appl. 12 (2005), no. 2-3, 261–269.

    Article  MATH  MathSciNet  Google Scholar 

  20. D. Noutsos, S. Serra-Capizzano, P. Vassalos, Matrix algebra preconditioners for multilevel Toeplitz systems do not insure optimal convergence rate. Theoret. Comput. Sci. 315 (2004), no. 2-3, 557–579.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Ruge, K. Stüben, Algebraic multigrid. In Frontiers in Applied Mathematics: Multigrid Methods. SIAM, 1987, 73–130.

    Google Scholar 

  22. S. Serra Capizzano, Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs matrix-sequences. Numer. Math. 92 (2002), no. 3, 433–465.

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Serra-Capizzano, Matrix algebra preconditioners for multilevel Toeplitz matrices are not superlinear. Special issue on structured and infinite systems of linear equations. Linear Algebra Appl. 343–344 (2002), 303–319.

    Article  MathSciNet  Google Scholar 

  24. S. Serra Capizzano, C. Tablino Possio, Spectral and structural analysis of high precision finite difference matrices for elliptic operators. Linear Algebra Appl. 293 (1999), no. 1-3, 85–131.

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Serra-Capizzano, C. Tablino-Possio, Multigrid methods for multilevel circulant matrices. SIAM J. Sci. Comput. 26 (2004), no. 1, 55–85.

    Article  MATH  MathSciNet  Google Scholar 

  26. S. Serra-Capizzano and E. Tyrtyshnikov, How to prove that a preconditioner cannot be superlinear. Math. Comp. 72 (2003), no. 243, 1305–1316.

    Article  MATH  MathSciNet  Google Scholar 

  27. G. Strang, The discrete cosine transform, SIAM Review, 41, n. 1, pp. 135–147, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Sun, X. Jin, Q. Chang, Convergence of the multigrid method for ill-conditioned block Toeplitz systems. BIT 41 (2001), no. 1, 179–190.

    Article  MATH  MathSciNet  Google Scholar 

  29. U. Trottenberg, C.W. Oosterlee and A. Schüller, Multigrid. With contributions by A. Brandt, P. Oswald and K. Stüben. Academic Press, Inc., 2001.

    Google Scholar 

  30. E. Tyrtyshnikov, Circulant preconditioners with unbounded inverses. Linear Algebra Appl. 216 (1995), 1–23.

    Article  MATH  MathSciNet  Google Scholar 

  31. R.S. Varga, Matrix Iterative Analysis. Prentice-Hall, Inc., Englewood Cliffs, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Georg Heinig

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Tablino Possio, C. (2010). V-cycle Optimal Convergence for DCT-III Matrices. In: Bini, D.A., Mehrmann, V., Olshevsky, V., Tyrtyshnikov, E.E., van Barel, M. (eds) Numerical Methods for Structured Matrices and Applications. Operator Theory: Advances and Applications, vol 199. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8996-3_17

Download citation

Publish with us

Policies and ethics