Advertisement

On Extremal Problems of Interpolation Theory with Unique Solution

  • Bernd Fritzsche
  • Bernd Kirstein
  • Lev A. Sakhnovich
Part of the Operator Theory: Advances and Applications book series (OT, volume 199)

Abstract

The main goal of this paper is to investigate the matrix extremal interpolation problem formulated in Chapter 7 of the monograph [7]. We give natural conditions under which the problem has one and only one solution. The basic idea of the proof is to use the matrix Riccati equation deduced in [7, Chapter 7].

Mathematics Subject Classification (2000)

Primary: 47A57 

Keywords

Matricial interpolation problems minimal solutions nonlinear matrix equation regular interpolation problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Akhiezer, N.I.: On a minimum problem in function theory and the number of roots of an algebraic equation inside the unit disc (Russian), Izv. Akad. Nauk SSR, Otdel. Mat. i Est. Nauk 9 (1930), 1169–1189, English Translation in: Topics in Interpolation Theory (Eds.: H. Dym, B. Fritzsche, V.E. Katsnelson, B. Kirstein), OT Series, Volume 95, Birkhäuser, Basel-Boston-Berlin 1997, pp. 19–35.Google Scholar
  2. [2]
    Ball, J.A.; Gohberg, I.; Rodman, L.: Interpolation of Rational Matrix Functions, OT Series, Volume 45, Birkhäuser, Basel-Boston-Berlin 1990.zbMATHGoogle Scholar
  3. [3]
    Ferrante, A.; Levy, B.C.: Hermitian solutions of the equation X = Q + NX −1N*, Linear Alg. Appl. 247 (1996), 359–373.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Helton, J.W.; Sakhnovich, L.A.: Extremal problems of interpolation theory, Rocky Mount. J. Math. 35 (2005), 819–841.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Kimura, H.: State space approach to the classical interpolation problem and its applications, in: Three Decades of Mathematical System Theory (Eds.: H. Nijmeijer, J.M. Schumacher), Lect. Notes Contr. Int. Sci., Volume 135, Springer, Berlin 1989, pp. 243–275.CrossRefGoogle Scholar
  6. [6]
    Ran, A.C.M.; Reurings, M.C.B.: A nonlinear matrix equation connected to interpolation theory, Linear Alg. Appl. 379 (2004), 289–302.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Sakhnovich, L.A.: Interpolation Theory and Its Applications, Kluwer, Dordrecht 1997.zbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  • Bernd Fritzsche
    • 1
  • Bernd Kirstein
    • 1
  • Lev A. Sakhnovich
    • 2
  1. 1.Fakultät für Mathematik und InformatikUniversität LeipzigLeipzigGermany
  2. 2.MilfordUSA

Personalised recommendations