On the Weyl Matrix Balls Corresponding to the Matricial Carathéodory Problem in Both Nondegenerate and Degenerate Cases

  • Bernd Fritzsche
  • Bernd Kirstein
  • Andreas Lasarow
Part of the Operator Theory: Advances and Applications book series (OT, volume 199)


The main goal of the paper is to determine the Weyl matrix balls associated with an arbitrary matricial Carathéodory problem. For the special case of a nondegenerate matricial Carathéodory problem the corresponding Weyl matrix balls were computed by I.V. Kovalishina [Ko] and alternatively by the first and the second authors in [FK1, Parts IV and V]. Mathematics Subject Classification (2000). Primary: 44A60, 47A57, 30E05 Secondary: 47A56.


Weyl matrix balls matricial Carathéodory problem matrix polynomials matricial Carathéodory functions matricial Schur functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Akh]
    Akhiezer, N.I.: The Classical Moment Problem (Russian), Fizmatgiz, Moskva 1961; English translation: Oliver and Boyd, Edinburgh-London 1965.zbMATHGoogle Scholar
  2. [AK]
    Arov, D.Z.; Kreîn, M.G.: Problems of the search of the minimum of entropy in indeterminate extension problems (Russian), Funkcional. Anal. Prilozen. 15 (1981), No. 2, 61–64; English translation: Func. Anal. Appl. 15 (1981), 123–126.Google Scholar
  3. [BGR]
    Ball, J.A.; Gohberg, I.; Rodman, L.: Interpolation of Rational Matrix Functions, Operator Theory: Adv. Appl. 45, Birkhäuser, Basel 1990.Google Scholar
  4. [BH]
    Ball, J.A.; Helton, J.W.: Interpolation problems of Pick-Nevanlinna and Loewner types for meromorphic matrix functions: parametrization of the set of all solutions, Integral Equations Operator Theory 9 (1986), 155–203.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [BD]
    Bolotnikov, V.; Dym, H.: On degenerate interpolation, entropy and extremal problems for matrix Schur functions, Integral Equations Operator Theory 32 (1998), 367–435.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [Br]
    Bruinsma, P.: Degenerate interpolation problems for Nevanlinna pairs, Indag. Math., N.S. 2 (1991), 179–200.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [CG]
    Chang, C.; Georgiou, T.: Geometric aspects of the Carathéodory extension problem, Linear Algebra Appl. 203/204 (1994), 209–251.CrossRefMathSciNetGoogle Scholar
  8. [CH1]
    Chen, G.N.; Hu, Y.J.: The truncated Hamburger matrix moment problems in the nondegenerate and degenerate cases, and matrix continued fractions, Linear Algebra Appl. 277 (1998), 199–236.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [CH2]
    Chen, G.N.; Hu, Y.J.: On the multiple Nevanlinna-Pick matrix interpolation in the class Cp and the Carathéodory matrix coefficient problem, Linear Algebra Appl. 283 (1998), 179–203.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [DGK1]
    Delsarte, P.; Genin, Y.; Kamp, Y.: Orthogonal polynomial matrices on the unit circle, IEEE Trans. Circuits and Systems CAS-25 (1978), 149–160.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [DGK2]
    Delsarte, P.; Genin, Y.; Kamp, Y.: The Nevanlinna-Pick problem for matrixvalued functions, SIAM J. Appl. Math. 36 (1979), 47–61.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [Du]
    Dubovoj, V.K.: Indefinite metric in the interpolation problem of Schur for analytic matrix functions IV (Russian), Teor. Funktsii, Funkts. Anal. i Prilozen. 42 (1984), 46–57; English translation in: Topics in Interpolation Theory (Eds.: H. Dym, B. Fritzsche, V.E. Katsnelson, B. Kirstein), Operator Theory: Adv. Appl. 95, Birkhäuser, Basel 1997, pp. 93–104.zbMATHGoogle Scholar
  13. [DFK]
    Dubovoj, V.K.; Fritzsche, B.; Kirstein, B.: Matricial Version of the Classical Schur Problem, Teubner-Texte zur Mathematik 129, B.G. Teubner, Stuttgart-Leipzig 1992.zbMATHGoogle Scholar
  14. [Dy]
    Dym, H.: J Contractive Matrix Functions, Reproducing Kernel Spaces and Interpolation, CBMS Regional Conference Series in Mathematics 71, Amer. Math. Soc., Providence, R.I. 1989.Google Scholar
  15. [Ev]
    Everitt, W.N.: A personal history of the m-coefficient, J. Comp. Appl. Math. 171 (2004), 185–197.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [FF]
    Foias, C.; Frazho, A.E.: The Commutant Lifting Approach to Interpolation Problems, Operator Theory: Adv. Appl. 44, Birkhäuser, Basel 1990.Google Scholar
  17. [FFGK]
    Foias, C.; Frazho, A.E.; Gohberg, I.; Kaashoek, M.A.: Metric Constrained Interpolation, Commutant Lifting and Systems, Operator Theory: Adv. Appl. 100, Birkhäuser, Basel 1998.Google Scholar
  18. [FFK]
    Fritzsche, B.; Fuchs, S.; Kirstein, B.: A Schur type matrix extension problem, Part V, Math. Nachr. 158 (1992), 133–159.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [FK1]
    Fritzsche, B.; Kirstein, B.: An extension problem for non-negative hermitian block Toeplitz matrices, Math. Nachr., Part I: 130 (1987), 121–135; Part II: 131 (1987), 287–297; Part III: 135 (1988), 319–341; Part IV: 143 (1989), 329–354; Part V: 144 (1989), 283–308.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [FK2]
    Fritzsche, B.; Kirstein, B.: On the Weyl matrix balls associated with nondegenerate matrix-valued Carathéodory functions, Zeitschr. für Analysis und ihre Anwendungen 12 (1993), 239–261.zbMATHMathSciNetGoogle Scholar
  21. [FK3]
    Fritzsche, B.; Kirstein, B.: Representations of central matrix-valued Carathéodory functions in both nondegenerate and degenerate cases, Integral Equations Operator Theory 50 (2004), 333–361.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [FKL1]
    Fritzsche, B.; Kirstein, B.; Lasarow, A.: The matricial Carathéodory problem in both nondegenerate and degenerate case, in: Operator Theory: Adv. Appl. (Subseries: Linear Operators and Linear Systems) Vol. 165 (Eds.: D. Alpay, I. Gohberg), Birkhäuser, Basel 2006, pp. 251–290.Google Scholar
  23. [FKL2]
    Fritzsche, B.; Kirstein, B.; Lasarow, A.: On a class of extremal solutions of the nondegenerate matricial Carathéodory problem, Analysis 27 (2007), 109–164.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [Ge1]
    Geronimus, Ja.L.: On polynomials orthogonal on the unit circle, on the trigonometric moment problem and on associated functions of classes of Carathéodory-Schur (Russian), Mat. USSR-Sb. 15 (1944), 99–130.MathSciNetGoogle Scholar
  25. [Ge2]
    Geronimus, Ja.L.: On the trigonometric moment problem, Ann.Math. 47 (1946), 742–761.CrossRefMathSciNetGoogle Scholar
  26. [Ge3]
    Geronimus, Ja.L.: Polynomials orthogonal on a circle and their applications (Russian), Zapiski Naučno-Issled. Mat. Meh. Har’kov. Mat. Obšč. 19 (1948), 35–120; English translation in: AMS Translations, Series 1, Volume 3, AMS, Providence, R.I. 1962, pp. 1–78.MathSciNetGoogle Scholar
  27. [GH]
    Gohberg, I.Ts.; Heinig, G.: Inversion of finite Toeplitz matrices consisting of elements of a non-commutative algebra (Russian), Rev. Roum. Math. Pures et. Appl. 19 (1974), 623–663.zbMATHMathSciNetGoogle Scholar
  28. [He]
    Hellinger, E.: Zur Stieltjesschen Kettenbruchtheorie, Math. Ann. 86 (1922), 18–29.zbMATHCrossRefMathSciNetGoogle Scholar
  29. [Ko]
    Kovalishina, I.V.: Analytic theory of a class of interpolation problems (Russian), Izv. Akad. Nauk SSSR, Ser. Mat. 47 (1983), 455–497; English translation: Math. USSR Izvestija 22 (1984), 419–463.MathSciNetGoogle Scholar
  30. [KP]
    Kovalishina, I.V.; Potapov, V.P.: The radii of a Weyl disk in the matricial Nevanlinna-Pick problem (Russian), in: Operator Theory in Function Spaces and Their Application (Ed.: V.A. Marčenko), Naukova Dumka, Kiev 1981, pp. 25–49; English translation in: Seven Papers Translated from the Russian, AMS Translations, Series 2, Volume 138, AMS, Providence, R.I. 1988, pp. 37–54.Google Scholar
  31. [Mi]
    Mikhailova, I.V.: Weyl matrix circles as a tool for uniqueness in the theory of multiplicative representations of J-inner matrix functions (Russian), in: Analysis in Infinite-dimensional Spaces and Operator Theory (Ed.: V.A. Marčenko), Naukova Dumka, Kiev 1983, pp. 101–117; English translation in: Topics in Interpolation Theory (Eds.: H. Dym, B. Fritzsche, V.E. Katsnelson, B. Kirstein), Operator Theory: Adv. Appl. 95, Birkhäuser, Basel 1997, pp. 397–417.Google Scholar
  32. [Ne]
    Nevanlinna, R.: Asymptotische Entwicklungen beschränkter Funktionen und das Stieltjessche Momentenproblem, Ann. Acad. Sci. Fenn. A18 (1922), 5, 1–53.Google Scholar
  33. [Or]
    Orlov, S.A.: Nested matrix balls, analytically depending on a parameter, and theorems on invariance of ranks of radii of limit matrix balls (Russian), Izv. Akad. Nauk SSSR, Ser. Mat. 40 (1976), 593–644; English translation: Math. USSR Izvestija 10 (1976), 565–613.zbMATHMathSciNetGoogle Scholar
  34. [Sa]
    Sakhnovich, L.A.: Interpolation Theory and its Applications, Mathematics and its Applications 428, Kluwer, Dordrecht 1997.Google Scholar
  35. [Sm]
    Šmuljan, Ju.L.: Operator balls (Russian), Teor. Funkcii, Funktional. Anal. i Prilozen. 6 (1968), 68–81; reprinted in: Integral Equations and Operator Theory 13 (1990), 864–882.Google Scholar
  36. [Wc]
    Weyl, H.: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann. 68 (1910), 220–269.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  • Bernd Fritzsche
    • 1
  • Bernd Kirstein
    • 1
  • Andreas Lasarow
    • 2
  1. 1.Fakultät für Mathematik und InformatikUniversität LeipzigLeipzigGermany
  2. 2.Departement ComputerwetenschappenKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations