Advertisement

Errors in Erasure: Links Between Histone Lysine Methylation Removal and Disease

  • Elizabeth M. Duncan
  • C. David Allis
Chapter
Part of the Progress in Drug Research book series (PDR, volume 67)

Abstract

Many studies have demonstrated that covalent histone modifications are dynamically regulated to cause both chemical and physical changes to the chromatin template. Such changes in the chromatin template lead to biologically significant consequences, including differential gene expression. Histone lysine methylation, in particular, has been shown to correlate with gene expression both positively and negatively, depending on the specific site and degree (i.e., mono-, di-, or tri-) of methylation within the histone sequence. Although genetic alterations in the proteins that establish, or “write,” methyl modifications and their effect in various human pathologies have been documented, connections between the misregulation of proteins that remove, or “erase,” histone methylation and disease have emerged more recently. Here we discuss three mechanisms through which histone methylation can be removed from the chromatin template. We describe how these “erasure” mechanisms are linked to pathways that are known to be misregulated in diseases, such as cancer. We further describe how errors in the removal of histone methylation can and do lead to human pathologies, both directly and indirectly.

Keywords

Esophageal Squamous Cell Carcinoma Histone Methylation Charge Syndrome Male Pronucleus Androgen Receptor Target 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank Gang Wang, Ping Chi, Joanna Wysocka, and Aaron Goldberg for a critical reading of the manuscript and for helpful advice in its preparation. We apologize to all those whose work we could not cite due to space constraints. C.D.A. is supported by NIH Grant GM53512, and both C.D.A. and E.M.D. are supported by a grant from the Tri-Institutional Stem Cell Initiative (funded by the Starr Foundation).

References

  1. 1.
    Van Holde KE (1989) Chromatin. Springer-Verlag, New YorkGoogle Scholar
  2. 2.
    Allis CD, Jenuwien T, Reinberg D (2006) Epigenetics. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  3. 3.
    Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794PubMedGoogle Scholar
  4. 4.
    Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–1043PubMedGoogle Scholar
  5. 5.
    Kouzarides T (2002) Histone methylation in transcriptional control. Curr Opin Genet Dev 12:198–209PubMedGoogle Scholar
  6. 6.
    Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–135PubMedGoogle Scholar
  7. 7.
    Strahl BD, Ohba R, Cook RG, Allis CD (1999) Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc Natl Acad Sci USA 96:14967–14972PubMedGoogle Scholar
  8. 8.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705PubMedGoogle Scholar
  9. 9.
    Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P et al (2006) A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442:86–90PubMedGoogle Scholar
  10. 10.
    Dillon SC, Zhang X, Trievel RC, Cheng X (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6:227PubMedGoogle Scholar
  11. 11.
    Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ et al (2004) Regulation of p53 activity through lysine methylation. Nature 432:353–360PubMedGoogle Scholar
  12. 12.
    Su IH, Basavaraj A, Krutchinsky AN, Hobert O, Ullrich A, Chait BT, Tarakhovsky A (2003) Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol 4:124–131PubMedGoogle Scholar
  13. 13.
    Schneider R, Bannister AJ, Kouzarides T (2002) Unsafe SETs: histone lysine methyltransferases and cancer. Trends Biochem Sci 27:396–402PubMedGoogle Scholar
  14. 14.
    Bannister AJ, Schneider R, Kouzarides T (2002) Histone methylation: dynamic or static? Cell 109:801–806PubMedGoogle Scholar
  15. 15.
    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080PubMedGoogle Scholar
  16. 16.
    Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953PubMedGoogle Scholar
  17. 17.
    Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y et al (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279–283PubMedGoogle Scholar
  18. 18.
    Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816PubMedGoogle Scholar
  19. 19.
    Cloos PA, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T, Hansen KH, Helin K (2006) The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442:307–311PubMedGoogle Scholar
  20. 20.
    Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y (2006) The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442:312–316PubMedGoogle Scholar
  21. 21.
    Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M et al (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125:467–481PubMedGoogle Scholar
  22. 22.
    Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, Xu G, Li E, Chen T (2009) KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461:415–418PubMedGoogle Scholar
  23. 23.
    Kahl P, Gullotti L, Heukamp LC, Wolf S, Friedrichs N, Vorreuther R, Solleder G, Bastian PJ, Ellinger J, Metzger E et al (2006) Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res 66:11341–11347PubMedGoogle Scholar
  24. 24.
    Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W, Liang J, Sun L, Yang X, Shi L et al (2009) LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138:660–672PubMedGoogle Scholar
  25. 25.
    Metzger E, Wissmann M, Yin N, Müller JM, Schneider R, Peters AHFM, Günther T, Buettner R, Schüle R (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439PubMedGoogle Scholar
  26. 26.
    Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, Opravil S, Shiekhattar R, Bedford MT, Jenuwein T et al (2007) p53 is regulated by the lysine demethylase LSD1. Nature 449:105–108PubMedGoogle Scholar
  27. 27.
    Yang ZQ, Imoto I, Fukuda Y, Pimkhaokham A, Shimada Y, Imamura M, Sugano S, Nakamura Y, Inazawa J (2000) Identification of a novel gene, GASC1, within an amplicon at 9p23-24 frequently detected in esophageal cancer cell lines. Cancer Res 60:4735–4739PubMedGoogle Scholar
  28. 28.
    Ehrbrecht A, Muller U, Wolter M, Hoischen A, Koch A, Radlwimmer B, Actor B, Mincheva A, Pietsch T, Lichter P et al (2006) Comprehensive genomic analysis of desmoplastic medulloblastomas: identification of novel amplified genes and separate evaluation of the different histological components. J Pathol 208:554–563PubMedGoogle Scholar
  29. 29.
    Italiano A, Attias R, Aurias A, Perot G, Burel-Vandenbos F, Otto J, Venissac N, Pedeutour F (2006) Molecular cytogenetic characterization of a metastatic lung sarcomatoid carcinoma: 9p23 neocentromere and 9p23-p24 amplification including JAK2 and JMJD2C. Cancer Genet Cytogenet 167:122–130PubMedGoogle Scholar
  30. 30.
    Yang ZQ, Imoto I, Pimkhaokham A, Shimada Y, Sasaki K, Oka M, Inazawa J (2001) A novel amplicon at 9p23–24 in squamous cell carcinoma of the esophagus that lies proximal to GASC1 and harbors NFIB. Jpn J Cancer Res 92:423–428PubMedGoogle Scholar
  31. 31.
    Hu N, Wang C, Hu Y, Yang HH, Giffen C, Tang ZZ, Han XY, Goldstein AM, Emmert-Buck MR, Buetow KH et al (2005) Genome-wide association study in esophageal cancer using GeneChip mapping 10K array. Cancer Res 65:2542–2546PubMedGoogle Scholar
  32. 32.
    Wissmann M, Yin N, Muller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Gunther T, Buettner R et al (2007) Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 9:347–353PubMedGoogle Scholar
  33. 33.
    Gray SG, Iglesias AH, Lizcano F, Villanueva R, Camelo S, Jingu H, Teh BT, Koibuchi N, Chin WW, Kokkotou E et al (2005) Functional characterization of JMJD2A, a histone deacetylase- and retinoblastoma-binding protein. J Biol Chem 280:28507–28518PubMedGoogle Scholar
  34. 34.
    Iwase S, Lan F, Bayliss P, de la Torre-Ubieta L, Huarte M, Qi HH, Whetstine JR, Bonni A, Roberts TM, Shi Y (2007) The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128:1077–1088PubMedGoogle Scholar
  35. 35.
    Jensen LR, Amende M, Gurok U, Moser B, Gimmel V, Tzschach A, Janecke AR, Tariverdian G, Chelly J, Fryns JP et al (2005) Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am J Hum Genet 76:227–236PubMedGoogle Scholar
  36. 36.
    Tahiliani M, Mei P, Fang R, Leonor T, Rutenberg M, Shimizu F, Li J, Rao A, Shi Y (2007) The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 447:601–605PubMedGoogle Scholar
  37. 37.
    Tzschach A, Lenzner S, Moser B, Reinhardt R, Chelly J, Fryns JP, Kleefstra T, Raynaud M, Turner G, Ropers HH et al (2006) Novel JARID1C/SMCX mutations in patients with X-linked mental retardation. Hum Mutat 27:389PubMedGoogle Scholar
  38. 38.
    Lee MG, Norman J, Shilatifard A, Shiekhattar R (2007) Physical and functional association of a trimethyl H3K4 demethylase and Ring6a/MBLR, a polycomb-like protein. Cell 128:877–887PubMedGoogle Scholar
  39. 39.
    Secombe J, Eisenman RN (2007) The function and regulation of the JARID1 family of histone H3 lysine 4 demethylases: the Myc connection. Cell Cycle 6:1324–1328PubMedGoogle Scholar
  40. 40.
    Klose RJ, Yan Q, Tothova Z, Yamane K, Erdjument-Bromage H, Tempst P, Gilliland DG, Zhang Y, Kaelin WG Jr (2007) The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 128:889–900PubMedGoogle Scholar
  41. 41.
    Defeo-Jones D, Huang PS, Jones RE, Haskell KM, Vuocolo GA, Hanobik MG, Huber HE, Oliff A (1991) Cloning of cDNAs for cellular proteins that bind to the retinoblastoma gene product. Nature 352:251–254PubMedGoogle Scholar
  42. 42.
    Benevolenskaya EV, Murray HL, Branton P, Young RA, Kaelin WG Jr (2005) Binding of pRB to the PHD protein RBP2 promotes cellular differentiation. Mol Cell 18:623–635PubMedGoogle Scholar
  43. 43.
    Lu PJ, Sundquist K, Baeckstrom D, Poulsom R, Hanby A, Meier-Ewert S, Jones T, Mitchell M, Pitha-Rowe P, Freemont P et al (1999) A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J Biol Chem 274:15633–15645PubMedGoogle Scholar
  44. 44.
    Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H, Taylor-Papadimitriou J, Tempst P, Zhang Y (2007) PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell 25:801–812PubMedGoogle Scholar
  45. 45.
    Secombe J, Li L, Carlos L, Eisenman RN (2007) The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes Dev 21:537–551PubMedGoogle Scholar
  46. 46.
    Lee MG, Villa R, Trojer P, Norman J, Yan K-P, Reinberg D, Di Croce L, Shiekhattar R (2007) Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318:447–450PubMedGoogle Scholar
  47. 47.
    Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449:731–734PubMedGoogle Scholar
  48. 48.
    De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G (2007) The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130:1083–1094PubMedGoogle Scholar
  49. 49.
    Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, Iwase S, Alpatov R, Issaeva I, Canaani E et al (2007) A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449:689–694PubMedGoogle Scholar
  50. 50.
    Xiang Y, Zhu Z, Han G, Lin H, Xu L, Chen CD (2007) JMJD3 is a histone H3K27 demethylase. Cell Res 17:850–857PubMedGoogle Scholar
  51. 51.
    van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C, Edkins S, Hardy C, O’Meara S, Teague J et al (2009) Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 41:521–523PubMedGoogle Scholar
  52. 52.
    Gil J, Bernard D, Martinez D, Beach D (2004) Polycomb CBX7 has a unifying role in cellular lifespan. Nat Cell Biol 6:67–72PubMedGoogle Scholar
  53. 53.
    Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397:164–168PubMedGoogle Scholar
  54. 54.
    Reddy MA, Villeneuve LM, Wang M, Lanting L, Natarajan R (2008) Role of the lysine-specific demethylase 1 in the proinflammatory phenotype of vascular smooth muscle cells of diabetic mice. Circ Res 103:615–623PubMedGoogle Scholar
  55. 55.
    Lu T, Jackson MW, Wang B, Yang M, Chance MR, Miyagi M, Gudkov AV, Stark GR (2010) Regulation of NF-kappaB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc Natl Acad Sci USA 107:46–51PubMedGoogle Scholar
  56. 56.
    Li Y, Reddy MA, Miao F, Shanmugam N, Yee JK, Hawkins D, Ren B, Natarajan R (2008) Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J Biol Chem 283:26771–26781PubMedGoogle Scholar
  57. 57.
    Pina B, Suau P (1987) Changes in histones H2A and H3 variant composition in differentiating and mature rat brain cortical neurons. Dev Biol 123:51–58PubMedGoogle Scholar
  58. 58.
    Lennox RW, Cohen LH (1988) The production of tissue-specific histone complements during development. Biochem Cell Biol 66:636–649PubMedGoogle Scholar
  59. 59.
    Yu L, Gorovsky MA (1997) Constitutive expression, not a particular primary sequence, is the important feature of the H3 replacement variant hv2 in Tetrahymena thermophila. Mol Cell Biol 17:6303–6310PubMedGoogle Scholar
  60. 60.
    Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9:1191–1200PubMedGoogle Scholar
  61. 61.
    Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116:51–61PubMedGoogle Scholar
  62. 62.
    Ray-Gallet D, Quivy JP, Scamps C, Martini EM, Lipinski M, Almouzni G (2002) HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol Cell 9:1091–1100PubMedGoogle Scholar
  63. 63.
    Lamour V, Lecluse Y, Desmaze C, Spector M, Bodescot M, Aurias A, Osley MA, Lipinski M (1995) A human homolog of the S. cerevisiae HIR1 and HIR2 transcriptional repressors cloned from the DiGeorge syndrome critical region. Hum Mol Genet 4:791–799PubMedGoogle Scholar
  64. 64.
    Scambler PJ (2000) The 22q11 deletion syndromes. Hum Mol Genet 9:2421–2426PubMedGoogle Scholar
  65. 65.
    Lindsay EA, Vitelli F, Su H, Morishima M, Huynh T, Pramparo T, Jurecic V, Ogunrinu G, Sutherland HF, Scambler PJ et al (2001) Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410:97–101PubMedGoogle Scholar
  66. 66.
    Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM, Xavier RJ, Demay MB, Russell RG, Factor S et al (2001) TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–629PubMedGoogle Scholar
  67. 67.
    Roberts C, Sutherland HF, Farmer H, Kimber W, Halford S, Carey A, Brickman JM, Wynshaw-Boris A, Scambler PJ (2002) Targeted mutagenesis of the Hira gene results in gastrulation defects and patterning abnormalities of mesoendodermal derivatives prior to early embryonic lethality. Mol Cell Biol 22:2318–2328PubMedGoogle Scholar
  68. 68.
    Bonnefoy E, Orsi GA, Couble P, Loppin B (2007) The essential role of Drosophila HIRA for de novo assembly of paternal chromatin at fertilization. PLoS Genet 3:1991–2006PubMedGoogle Scholar
  69. 69.
    Loppin B, Bonnefoy E, Anselme C, Laurencon A, Karr TL, Couble P (2005) The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437:1386–1390PubMedGoogle Scholar
  70. 70.
    Hodl M, Basler K (2009) Transcription in the absence of histone H3.3. Curr Biol 19:1221–1226PubMedGoogle Scholar
  71. 71.
    Sakai A, Schwartz BE, Goldstein S, Ahmad K (2009) Transcriptional and developmental functions of the H3.3 histone variant in Drosophila. Curr Biol 19(21):1816–1820PubMedGoogle Scholar
  72. 72.
    Torres-Padilla M-E, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50:455–461PubMedGoogle Scholar
  73. 73.
    van der Heijden GW, Derijck AA, Posfai E, Giele M, Pelczar P, Ramos L, Wansink DG, van der Vlag J, Peters AH, de Boer P (2007) Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat Genet 39:251–258PubMedGoogle Scholar
  74. 74.
    Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F, Lee C, Almouzni G, Schneider R, Surani MA (2008) Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452:877–881PubMedGoogle Scholar
  75. 75.
    Konev AY, Tribus M, Park SY, Podhraski V, Lim CY, Emelyanov AV, Vershilova E, Pirrotta V, Kadonaga JT, Lusser A et al (2007) CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317:1087–1090PubMedGoogle Scholar
  76. 76.
    Marfella CG, Imbalzano AN (2007) The Chd family of chromatin remodelers. Mutat Res 618:30–40PubMedGoogle Scholar
  77. 77.
    Ge Q, Nilasena DS, O’Brien CA, Frank MB, Targoff IN (1995) Molecular analysis of a major antigenic region of the 240-kD protein of Mi-2 autoantigen. J Clin Invest 96:1730–1737PubMedGoogle Scholar
  78. 78.
    Seelig HP, Moosbrugger I, Ehrfeld H, Fink T, Renz M, Genth E (1995) The major dermatomyositis-specific Mi-2 autoantigen is a presumed helicase involved in transcriptional activation. Arthritis Rheum 38:1389–1399PubMedGoogle Scholar
  79. 79.
    Seelig HP, Renz M, Targoff IN, Ge Q, Frank MB (1996) Two forms of the major antigenic protein of the dermatomyositis-specific Mi-2 autoantigen. Arthritis Rheum 39:1769–1771PubMedGoogle Scholar
  80. 80.
    Schwab U, Stein H, Gerdes J, Lemke H, Kirchner H, Schaadt M, Diehl V (1982) Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin’s disease and a subset of normal lymphoid cells. Nature 299:65–67PubMedGoogle Scholar
  81. 81.
    Bagchi A, Papazoglu C, Wu Y, Capurso D, Brodt M, Francis D, Bredel M, Vogel H, Mills AA (2007) CHD5 is a tumor suppressor at human 1p36. Cell 128:459–475PubMedGoogle Scholar
  82. 82.
    Thompson PM, Gotoh T, Kok M, White PS, Brodeur GM (2003) CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system. Oncogene 22:1002–1011PubMedGoogle Scholar
  83. 83.
    Mori N, Morosetti R, Mizoguchi H, Koeffler HP (2003) Progression of myelodysplastic syndrome: allelic loss on chromosomal arm 1p. Br J Haematol 122:226–230PubMedGoogle Scholar
  84. 84.
    Mori N, Morosetti R, Spira S, Lee S, Ben-Yehuda D, Schiller G, Landolfi R, Mizoguchi H, Koeffler HP (1998) Chromosome band 1p36 contains a putative tumor suppressor gene important in the evolution of chronic myelocytic leukemia. Blood 92:3405–3409PubMedGoogle Scholar
  85. 85.
    Bieche I, Champeme MH, Matifas F, Cropp CS, Callahan R, Lidereau R (1993) Two distinct regions involved in 1p deletion in human primary breast cancer. Cancer Res 53:1990–1994PubMedGoogle Scholar
  86. 86.
    Cheung TH, Lo KW, Yim SF, Poon CS, Cheung AY, Chung TK, Wong YF (2005) Clinicopathologic significance of loss of heterozygosity on chromosome 1 in cervical cancer. Gynecol Oncol 96:510–515PubMedGoogle Scholar
  87. 87.
    Kleer CG, Bryant BR, Giordano TJ, Sobel M, Merino MJ (2000) Genetic changes in chromosomes 1p and 17p in thyroid cancer progression. Endocr Pathol 11:137–143PubMedGoogle Scholar
  88. 88.
    Sanlaville D, Verloes A (2007) CHARGE syndrome: an update. Eur J Hum Genet 15:389–399PubMedGoogle Scholar
  89. 89.
    Vissers LE, van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB, Janssen IM, van der Vliet WA, Huys EH, de Jong PJ, Hamel BC et al (2004) Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet 36:955–957PubMedGoogle Scholar
  90. 90.
    Kallen K, Robert E, Mastroiacovo P, Castilla EE, Kallen B (1999) CHARGE Association in newborns: a registry-based study. Teratology 60:334–343PubMedGoogle Scholar
  91. 91.
    Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, Chang CP, Zhao Y, Swigut T, Wysocka J (2010) CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463:958–962Google Scholar
  92. 92.
    Siebert JR, Graham JM Jr, MacDonald C (1985) Pathologic features of the CHARGE association: support for involvement of the neural crest. Teratology 31:331–336PubMedGoogle Scholar
  93. 93.
    Schnetz MP, Bartels CF, Shastri K, Balasubramanian D, Zentner GE, Balaji R, Zhang X, Song L, Wang Z, Laframboise T et al (2009) Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res 19:590–601PubMedGoogle Scholar
  94. 94.
    Roberts C, Daw SC, Halford S, Scambler PJ (1997) Cloning and developmental expression analysis of chick Hira (Chira), a candidate gene for DiGeorge syndrome. Hum Mol Genet 6:237–245PubMedGoogle Scholar
  95. 95.
    Wilming LG, Snoeren CA, van Rijswijk A, Grosveld F, Meijers C (1997) The murine homologue of HIRA, a DiGeorge syndrome candidate gene, is expressed in embryonic structures affected in human CATCH22 patients. Hum Mol Genet 6:247–258PubMedGoogle Scholar
  96. 96.
    Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X et al (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140:678–691PubMedGoogle Scholar
  97. 97.
    Higgs DR, Garrick D, Anguita E, De Gobbi M, Hughes J, Muers M, Vernimmen D, Lower K, Law M, Argentaro A et al (2005) Understanding alpha-globin gene regulation: aiming to improve the management of thalassemia. Ann N Y Acad Sci 1054:92–102PubMedGoogle Scholar
  98. 98.
    Allis CD, Bowen JK, Abraham GN, Glover CV, Gorovsky MA (1980) Proteolytic processing of histone H3 in chromatin: a physiologically regulated event in Tetrahymena micronuclei. Cell 20:55–64PubMedGoogle Scholar
  99. 99.
    Falk MM, Grigera PR, Bergmann IE, Zibert A, Multhaup G, Beck E (1990) Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3. J Virol 64:748–756PubMedGoogle Scholar
  100. 100.
    Duncan EM, Muratore-Schroeder TL, Cook RG, Garcia BA, Shabanowitz J, Hunt DF, Allis CD (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135:284–294PubMedGoogle Scholar
  101. 101.
    Santos-Rosa H, Kirmizis A, Nelson C, Bartke T, Saksouk N, Cote J, Kouzarides T (2009) Histone H3 tail clipping regulates gene expression. Nat Struct Mol Biol 16:17–22PubMedGoogle Scholar
  102. 102.
    Barrett AJ, Rawlings ND, Woessner JF (eds) (2003) Handbook of proteolytic enzymes. Academic Press, LondonGoogle Scholar
  103. 103.
    Troen BR, Gal S, Gottesman MM (1987) Sequence and expression of the cDNA for MEP (major excreted protein), a transformation-regulated secreted cathepsin. Biochem J 246:731–735PubMedGoogle Scholar
  104. 104.
    Hiwasa T, Sakiyama S (1996) Nuclear localization of procathepsin L/MEP in ras-transformed mouse fibroblasts. Cancer Lett 99:87–91PubMedGoogle Scholar
  105. 105.
    Goulet B, Baruch A, Moon NS, Poirier M, Sansregret LL, Erickson A, Bogyo M, Nepveu A (2004) A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol Cell 14:207–219PubMedGoogle Scholar
  106. 106.
    Boudreau F, Lussier CR, Mongrain S, Darsigny M, Drouin JL, Doyon G, Suh ER, Beaulieu JF, Rivard N, Perreault N (2007) Loss of cathepsin L activity promotes claudin-1 overexpression and intestinal neoplasia. FASEB J 21:3853–3865PubMedGoogle Scholar
  107. 107.
    Denhardt DT, Greenberg AH, Egan SE, Hamilton RT, Wright JA (1987) Cysteine proteinase cathepsin L expression correlates closely with the metastatic potential of H-ras-transformed murine fibroblasts. Oncogene 2:55–59PubMedGoogle Scholar
  108. 108.
    Lah TT, Kos J (1998) Cysteine proteinases in cancer progression and their clinical relevance for prognosis. Biol Chem 379:125–130PubMedGoogle Scholar
  109. 109.
    Goulet B, Sansregret L, Leduy L, Bogyo M, Weber E, Chauhan SS, Nepveu A (2007) Increased expression and activity of nuclear cathepsin L in cancer cells suggests a novel mechanism of cell transformation. Mol Cancer Res 5:899–907PubMedGoogle Scholar
  110. 110.
    Imschenetzky M, Diaz F, Montecino M, Sierra F, Puchi M (1997) Identification of a cysteine protease responsible for degradation of sperm histones during male pronucleus remodeling in sea urchins. J Cell Biochem 67:304–315PubMedGoogle Scholar
  111. 111.
    Concha C, Monardes A, Even Y, Morin V, Puchi M, Imschenetzky M, Geneviere AM (2005) Inhibition of cysteine protease activity disturbs DNA replication and prevents mitosis in the early mitotic cell cycles of sea urchin embryos. J Cell Physiol 204:693–703PubMedGoogle Scholar
  112. 112.
    Morin V, Sanchez A, Quiñones K, Huidobro JG, Iribarren C, Bustos P, Puchi M, Genevière AM, Imschenetzky M (2008) Cathepsin L inhibitor I blocks mitotic chromosomes decondensation during cleavage cell cycles of sea urchin embryos. J Cell Physiol 216:790–795PubMedGoogle Scholar
  113. 113.
    Lee KH, Lee NJ, Hyun S, Park YK, Yang EG, Lee J-K, Jeong S, Yu J (2009) Histone H3 N-terminal peptide binds directly to its own mRNA: a possible mode of feedback inhibition to control translation. Chembiochem 10:1313–1316PubMedGoogle Scholar
  114. 114.
    Bab I, Gavish H, Namdar-Attar M, Muhlrad A, Greenberg Z, Chen Y, Mansur N, Shteyer A, Chorev M (1999) Isolation of mitogenically active C-terminal truncated pentapeptide of osteogenic growth peptide from human plasma and culture medium of murine osteoblastic cells. J Pept Res 54:408–414PubMedGoogle Scholar
  115. 115.
    Bab I, Gazit D, Chorev M, Muhlrad A, Shteyer A, Greenberg Z, Namdar M, Kahn A (1992) Histone H4-related osteogenic growth peptide (OGP): a novel circulating stimulator of osteoblastic activity. EMBO J 11:1867–1873PubMedGoogle Scholar
  116. 116.
    Bab I, Smith E, Gavish H, Attar-Namdar M, Chorev M, Chen YC, Muhlrad A, Birnbaum MJ, Stein G, Frenkel B (1999) Biosynthesis of osteogenic growth peptide via alternative translational initiation at AUG85 of histone H4 mRNA. J Biol Chem 274:14474–14481PubMedGoogle Scholar
  117. 117.
    Smith E, Meyerrose TE, Kohler T, Namdar-Attar M, Bab N, Lahat O, Noh T, Li J, Karaman MW, Hacia JG et al (2005) Leaky ribosomal scanning in mammalian genomes: significance of histone H4 alternative translation in vivo. Nucleic Acids Res 33:1298–1308PubMedGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of Neurobiology and AnatomyUniversity of UtahSalt Lake CityUSA

Personalised recommendations