DNA Repair and the Control of DNA Methylation

  • Primo Schär
  • Olivier Fritsch
Part of the Progress in Drug Research book series (PDR, volume 67)


The successful establishment and stable maintenance of cell identity are critical for organismal development and tissue homeostasis. Cell identity is provided by epigenetic mechanisms that facilitate a selective readout of the genome. Operating at the level of chromatin, they establish defined gene expression programs during cell differentiation. Among the epigenetic modifications in mammalian chromatin, the 5′-methylation of cytosine in CpG dinucleotides is unique in that it affects the DNA rather than histones and the biochemistry of the DNA methylating enzymes offers a mechanistic explanation for stable inheritance. Yet, DNA methylation states appear to be more dynamic and their maintenance more complex than existing models predict. Also, methylation patterns are by far not always faithfully inherited, as best exemplified by human cancers. Often, these show widespread hypo- or hypermethylation across their genomes, reflecting an underlying epigenetic instability that may have contributed to carcinogenesis. The phenotype of unstable methylation in cancer illustrates the importance of quality control in the DNA methylation system and implies the existence of proof-reading mechanisms that enforce fidelity to DNA methylation in healthy tissue. Fidelity seems particularly important in islands of unmethylated CpG-rich sequences where an accurate maintenance of un- or differentially methylated states is critical for stable expression of nearby genes. Methylation proof-reading in such sequences requires a system capable of recognition and active demethylation of erroneously methylated CpGs. Active demethylation of 5-methylcytosine has been known to occur for long, but the underlying mechanisms have remained enigmatic and controversial. However, recent progress in this direction substantiates a role of DNA repair in such processes. This review will address general aspects of cytosine methylation stability in mammalian DNA and explore a putative role of DNA repair in methylation control.


Methylation Pattern Base Excision Repair Active Demethylation Gene Regulatory Sequence Maintenance Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070PubMedCrossRefGoogle Scholar
  2. 2.
    Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler D (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39:457–466PubMedCrossRefGoogle Scholar
  3. 3.
    Illingworth RS, Bird AP (2009) CpG islands – ‘a rough guide’. FEBS Lett 583:1713–1720PubMedCrossRefGoogle Scholar
  4. 4.
    Gronbaek K, Hother C, Jones PA (2007) Epigenetic changes in cancer. APMIS 115:1039–1059PubMedCrossRefGoogle Scholar
  5. 5.
    Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093PubMedCrossRefGoogle Scholar
  6. 6.
    Jones PA, Liang G (2009) Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10:805–811PubMedCrossRefGoogle Scholar
  7. 7.
    Jeltsch A (2006) Molecular enzymology of mammalian DNA methyltransferases. Curr Top Microbiol Immunol 301:203–225PubMedCrossRefGoogle Scholar
  8. 8.
    Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257PubMedCrossRefGoogle Scholar
  9. 9.
    Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y, Cedar H, Bergman Y (2006) G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 8:188–194PubMedCrossRefGoogle Scholar
  10. 10.
    Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874PubMedCrossRefGoogle Scholar
  11. 11.
    Hu JL, Zhou BO, Zhang RR, Zhang KL, Zhou JQ, Xu GL (2009) The N-terminus of histone H3 is required for de novo DNA methylation in chromatin. Proc Natl Acad Sci USA 106(52):22187–22192PubMedCrossRefGoogle Scholar
  12. 12.
    Jelinic P, Stehle JC, Shaw P (2006) The testis-specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation. PLoS Biol 4:e355PubMedCrossRefGoogle Scholar
  13. 13.
    Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97PubMedCrossRefGoogle Scholar
  14. 14.
    Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF (1997) Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277:1996–2000PubMedCrossRefGoogle Scholar
  15. 15.
    Mortusewicz O, Schermelleh L, Walter J, Cardoso MC, Leonhardt H (2005) Recruitment of DNA methyltransferase I to DNA repair sites. Proc Natl Acad Sci USA 102:8905–8909PubMedCrossRefGoogle Scholar
  16. 16.
    Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K, Tajima S, Mitsuya K, Okano M, Koseki H (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450:908–912PubMedCrossRefGoogle Scholar
  17. 17.
    Dong KB, Maksakova IA, Mohn F, Leung D, Appanah R, Lee S, Yang HW, Lam LL, Mager DL, Schubeler D, Tachibana M, Shinkai Y, Lorincz MC (2008) DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO J 27:2691–2701PubMedCrossRefGoogle Scholar
  18. 18.
    Fuks F, Hurd PJ, Deplus R, Kouzarides T (2003) The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 31:2305–2312PubMedCrossRefGoogle Scholar
  19. 19.
    Turker MS, Swisshelm K, Smith AC, Martin GM (1989) A partial methylation profile for a CpG site is stably maintained in mammalian tissues and cultured cell lines. J Biol Chem 264:11632–11636PubMedGoogle Scholar
  20. 20.
    Pfeifer GP, Steigerwald SD, Hansen RS, Gartler SM, Riggs AD (1990) Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc Natl Acad Sci USA 87:8252–8256PubMedCrossRefGoogle Scholar
  21. 21.
    Riggs AD, Xiong Z, Wang L, LeBon JM (1998) Methylation dynamics, epigenetic fidelity and X chromosome structure. Novartis Found Symp 214:214–225, discussion 225-232PubMedGoogle Scholar
  22. 22.
    Ushijima T, Watanabe N, Okochi E, Kaneda A, Sugimura T, Miyamoto K (2003) Fidelity of the methylation pattern and its variation in the genome. Genome Res 13:868–874PubMedCrossRefGoogle Scholar
  23. 23.
    Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432PubMedCrossRefGoogle Scholar
  24. 24.
    Wilks AF, Cozens PJ, Mattaj IW, Jost JP (1982) Estrogen induces a demethylation at the 5′ end region of the chicken vitellogenin gene. Proc Natl Acad Sci USA 79:4252–4555PubMedCrossRefGoogle Scholar
  25. 25.
    Saluz HP, Jiricny J, Jost JP (1986) Genomic sequencing reveals a positive correlation between the kinetics of strand-specific DNA demethylation of the overlapping estradiol/glucocorticoid-receptor binding sites and the rate of avian vitellogenin mRNA synthesis. Proc Natl Acad Sci USA 83:7167–7171PubMedCrossRefGoogle Scholar
  26. 26.
    Jost JP, Saluz HP, Pawlak A (1991) Estradiol down regulates the binding activity of an avian vitellogenin gene repressor (MDBP-2) and triggers a gradual demethylation of the mCpG pair of its DNA binding site. Nucleic Acids Res 19:5771–5775PubMedCrossRefGoogle Scholar
  27. 27.
    Lucarelli M, Fuso A, Strom R, Scarpa S (2001) The dynamics of myogenin site-specific demethylation is strongly correlated with its expression and with muscle differentiation. J Biol Chem 276:7500–7506PubMedCrossRefGoogle Scholar
  28. 28.
    Thomassin H, Flavin M, Espinas ML, Grange T (2001) Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO J 20:1974–1983PubMedCrossRefGoogle Scholar
  29. 29.
    Kress C, Thomassin H, Grange T (2006) Active cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks. Proc Natl Acad Sci USA 103:11112–11117PubMedCrossRefGoogle Scholar
  30. 30.
    Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ, Carmouche RP, Ibberson D, Barath P, Demay F, Reid G, Benes V, Jeltsch A, Gannon F, Salbert G (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452:45–50PubMedCrossRefGoogle Scholar
  31. 31.
    Kangaspeska S, Stride B, Metivier R, Polycarpou-Schwarz M, Ibberson D, Carmouche RP, Benes V, Gannon F, Reid G (2008) Transient cyclical methylation of promoter DNA. Nature 452:112–115PubMedCrossRefGoogle Scholar
  32. 32.
    Kim MS, Kondo T, Takada I, Youn MY, Yamamoto Y, Takahashi S, Matsumoto T, Fujiyama S, Shirode Y, Yamaoka I, Kitagawa H, Takeyama K, Shibuya H, Ohtake F, Kato S (2009) DNA demethylation in hormone-induced transcriptional derepression. Nature 461:1007–1012PubMedCrossRefGoogle Scholar
  33. 33.
    Mohn F, Schubeler D (2009) Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends Genet 25:129–136PubMedCrossRefGoogle Scholar
  34. 34.
    Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413PubMedCrossRefGoogle Scholar
  35. 35.
    Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610PubMedCrossRefGoogle Scholar
  36. 36.
    Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, Laird PW (2007) Epigenetic stem cell signature in cancer. Nat Genet 39:157–158PubMedCrossRefGoogle Scholar
  37. 37.
    Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507PubMedCrossRefGoogle Scholar
  38. 38.
    Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15:1010–1012PubMedCrossRefGoogle Scholar
  39. 39.
    Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG (2001) Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 10:687–692PubMedCrossRefGoogle Scholar
  40. 40.
    Chan AO, Rashid A (2006) CpG island methylation in precursors of gastrointestinal malignancies. Curr Mol Med 6:401–408PubMedCrossRefGoogle Scholar
  41. 41.
    Menigatti M, Truninger K, Gebbers JO, Marbet U, Marra G, Schar P (2009) Normal colorectal mucosa exhibits sex- and segment-specific susceptibility to DNA methylation at the hMLH1 and MGMT promoters. Oncogene 28:899–909PubMedCrossRefGoogle Scholar
  42. 42.
    Momparler RL (2003) Cancer epigenetics. Oncogene 22:6479–6483PubMedCrossRefGoogle Scholar
  43. 43.
    Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455PubMedCrossRefGoogle Scholar
  44. 44.
    Rauch TA, Zhong X, Wu X, Wang M, Kernstine KH, Wang Z, Riggs AD, Pfeifer GP (2008) High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci USA 105:252–257PubMedCrossRefGoogle Scholar
  45. 45.
    Vera E, Canela A, Fraga MF, Esteller M, Blasco MA (2008) Epigenetic regulation of telomeres in human cancer. Oncogene 27:6817–6833PubMedCrossRefGoogle Scholar
  46. 46.
    Toyota M, Issa JP (1999) CpG island methylator phenotypes in aging and cancer. Semin Cancer Biol 9:349–357PubMedCrossRefGoogle Scholar
  47. 47.
    Toyota M, Ahuja N, Suzuki H, Itoh F, Ohe-Toyota M, Imai K, Baylin SB, Issa JP (1999) Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res 59:5438–5442PubMedGoogle Scholar
  48. 48.
    Ogino S, Cantor M, Kawasaki T, Brahmandam M, Kirkner GJ, Weisenberger DJ, Campan M, Laird PW, Loda M, Fuchs CS (2006) CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies. Gut 55:1000–1006PubMedCrossRefGoogle Scholar
  49. 49.
    Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, Koh H, Simms L, Barker M, Leggett B, Levine J, Kim M, French AJ, Thibodeau SN, Jass J, Haile R, Laird PW (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38:787–793PubMedCrossRefGoogle Scholar
  50. 50.
    Ehrlich M (2003) The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin Immunol 109:17–28PubMedCrossRefGoogle Scholar
  51. 51.
    Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492PubMedCrossRefGoogle Scholar
  52. 52.
    Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, Hirohashi S (2002) Overexpression of a splice variant of DNA methyltransferase 3b, DNMT3b4, associated with DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis. Proc Natl Acad Sci USA 99:10060–10065PubMedCrossRefGoogle Scholar
  53. 53.
    Gopalakrishnan S, Van Emburgh BO, Shan J, Su Z, Fields CR, Vieweg J, Hamazaki T, Schwartz PH, Terada N, Robertson KD (2009) A novel DNMT3B splice variant expressed in tumor and pluripotent cells modulates genomic DNA methylation patterns and displays altered DNA binding. Mol Cancer Res 7:1622–1634PubMedCrossRefGoogle Scholar
  54. 54.
    Fang JY, Xiao SD (2003) Folic acid, polymorphism of methyl-group metabolism genes, and DNA methylation in relation to GI carcinogenesis. J Gastroenterol 38:821–829PubMedCrossRefGoogle Scholar
  55. 55.
    Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W, Berman DM, Jenuwein T, Pruitt K, Sharkis SJ, Watkins DN, Herman JG, Baylin SB (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242PubMedCrossRefGoogle Scholar
  56. 56.
    Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE, Bergman Y, Simon I, Cedar H (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39:232–236PubMedCrossRefGoogle Scholar
  57. 57.
    Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38:413–443PubMedCrossRefGoogle Scholar
  58. 58.
    Arita K, Ariyoshi M, Tochio H, Nakamura Y, Shirakawa M (2008) Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 455:818–821PubMedCrossRefGoogle Scholar
  59. 59.
    Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, Xu G, Li E, Chen T (2009) KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461:415–418PubMedCrossRefGoogle Scholar
  60. 60.
    Bhattacharya SK, Ramchandani S, Cervoni N, Szyf M (1999) A mammalian protein with specific demethylase activity for mCpG DNA. Nature 397:579–583PubMedCrossRefGoogle Scholar
  61. 61.
    Gong Z, Morales-Ruiz T, Ariza RR, Roldan-Arjona T, David L, Zhu JK (2002) ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111:803–814PubMedCrossRefGoogle Scholar
  62. 62.
    Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in arabidopsis. Cell 110:33–42PubMedCrossRefGoogle Scholar
  63. 63.
    Schärer OD, Jiricny J (2001) Recent progress in the biology, chemistry and structural biology of DNA glycosylases. BioEssays 23:270–281PubMedCrossRefGoogle Scholar
  64. 64.
    Robertson AB, Klungland A, Rognes T, Leiros I (2009) DNA repair in mammalian cells: base excision repair: the long and short of it. Cell Mol Life Sci 66:981–993PubMedCrossRefGoogle Scholar
  65. 65.
    Neddermann P, Jiricny J (1993) The purification of a mismatch-specific thymine-DNA glycosylase from HeLa cells. J Biol Chem 268:21218–21224PubMedGoogle Scholar
  66. 66.
    Bellacosa A, Cicchillitti L, Schepis F, Riccio A, Yeung AT, Matsumoto Y, Golemis EA, Genuardi M, Neri G (1999) MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1. Proc Natl Acad Sci USA 96:3969–3974PubMedCrossRefGoogle Scholar
  67. 67.
    Hendrich B, Hardeland U, Ng HH, Jiricny J, Bird A (1999) The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401:301–304PubMedCrossRefGoogle Scholar
  68. 68.
    Li YQ, Zhou PZ, Zheng XD, Walsh CP, Xu GL (2007) Association of Dnmt3a and thymine DNA glycosylase links DNA methylation with base-excision repair. Nucleic Acids Res 35:390–400PubMedCrossRefGoogle Scholar
  69. 69.
    Gallais R, Demay F, Barath P, Finot L, Jurkowska R, Le Guevel R, Gay F, Jeltsch A, Metivier R, Salbert G (2007) Dnmt 3a and 3b associate with the nuclear orphan receptor COUP-TFI during gene activation. Mol Endocrinol 21:2085–2098PubMedCrossRefGoogle Scholar
  70. 70.
    Zhu B, Zheng Y, Hess D, Angliker H, Schwarz S, Siegmann M, Thiry S, Jost JP (2000) 5-methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. Proc Natl Acad Sci USA 97:5135–5139PubMedCrossRefGoogle Scholar
  71. 71.
    Zhu B, Zheng Y, Angliker H, Schwarz S, Thiry S, Siegmann M, Jost JP (2000) 5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence. Nucleic Acids Res 28:4157–4165PubMedCrossRefGoogle Scholar
  72. 72.
    Shen JC, Zingg JM, Yang AS, Schmutte C, Jones PA (1995) A mutant HpaII methyltransferase functions as a mutator enzyme. Nucleic Acids Res 23:4275–4282PubMedCrossRefGoogle Scholar
  73. 73.
    Yebra MJ, Bhagwat AS (1995) A cytosine methyltransferase converts 5-methylcytosine in DNA to thymine. Biochemistry 34:14752–14757PubMedCrossRefGoogle Scholar
  74. 74.
    Morgan HD, Dean W, Coker HA, Reik W, Petersen-Mahrt SK (2004) Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem 279:52353–52360PubMedCrossRefGoogle Scholar
  75. 75.
    Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR (2008) DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135:1201–1212PubMedCrossRefGoogle Scholar
  76. 76.
    Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, Jacobsen SE, Reik W (2010) Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature doi:10.1038/nature08829Google Scholar
  77. 77.
    Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM (2009) Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature doi:10.1038/nature08752Google Scholar
  78. 78.
    Barreto G, Schafer A, Marhold J, Stach D, Swaminathan SK, Handa V, Doderlein G, Maltry N, Wu W, Lyko F, Niehrs C (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445:671–675PubMedCrossRefGoogle Scholar
  79. 79.
    Schmitz KM, Schmitt N, Hoffmann-Rohrer U, Schafer A, Grummt I, Mayer C (2009) TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol Cell 33:344–353PubMedCrossRefGoogle Scholar
  80. 80.
    Jin SG, Guo C, Pfeifer GP (2008) GADD45A does not promote DNA demethylation. PLoS Genet 4:e1000013PubMedCrossRefGoogle Scholar
  81. 81.
    Engel N, Tront JS, Erinle T, Nguyen N, Latham KE, Sapienza C, Hoffman B, Liebermann DA (2009) Conserved DNA methylation in Gadd45a(−/−) mice. Epigenetics 4:98–99PubMedCrossRefGoogle Scholar
  82. 82.
    Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930PubMedCrossRefGoogle Scholar
  83. 83.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935PubMedCrossRefGoogle Scholar
  84. 84.
    Cannon SV, Cummings A, Teebor GW (1988) 5-Hydroxymethylcytosine DNA glycosylase activity in mammalian tissue. Biochem Biophys Res Commun 151:1173–1179PubMedCrossRefGoogle Scholar
  85. 85.
    Um S, Harbers M, Benecke A, Pierrat B, Losson R, Chambon P (1998) Retinoic acid receptors interact physically and functionally with the T:G mismatch-specific thymine-DNA glycosylase. J Biol Chem 273:20728–20736PubMedCrossRefGoogle Scholar
  86. 86.
    Tini M, Benecke A, Um SJ, Torchia J, Evans RM, Chambon P (2002) Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol Cell 9:265–277PubMedCrossRefGoogle Scholar
  87. 87.
    Cortazar D, Kunz C, Saito Y, Steinacher R, Schär P (2007) The enigmatic thymine DNA glycosylase. DNA Repair (Amst) 6:489–504CrossRefGoogle Scholar
  88. 88.
    Missero C, Pirro MT, Simeone S, Pischetola M, Di Lauro R (2001) The DNA glycosylase T:G mismatch-specific thymine DNA glycosylase represses thyroid transcription factor-1-activated transcription. J Biol Chem 276:33569–33575PubMedCrossRefGoogle Scholar
  89. 89.
    Chen D, Lucey MJ, Phoenix F, Lopez-Garcia J, Hart SM, Losson R, Buluwela L, Coombes RC, Chambon P, Schär P, Ali S (2003) T:G mismatch-specific thymine-DNA glycosylase potentiates transcription of estrogen-regulated genes through direct interaction with estrogen receptor alpha. J Biol Chem 278:38586–38592PubMedCrossRefGoogle Scholar
  90. 90.
    Lucey MJ, Chen D, Lopez-Garcia J, Hart SM, Phoenix F, Al-Jehani R, Alao JP, White R, Kindle KB, Losson R, Chambon P, Parker MG, Schär P, Heery DM, Buluwela L, Ali S (2005) T:G mismatch-specific thymine-DNA glycosylase (TDG) as a coregulator of transcription interacts with SRC1 family members through a novel tyrosine repeat motif. Nucleic Acids Res 33:6393–6404PubMedCrossRefGoogle Scholar
  91. 91.
    Sato N, Kondo M, Arai K (2006) The orphan nuclear receptor GCNF recruits DNA methyltransferase for Oct-3/4 silencing. Biochem Biophys Res Commun 344:845–851PubMedCrossRefGoogle Scholar
  92. 92.
    Hervouet E, Vallette FM, Cartron PF (2009) Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenetics 4:487–499PubMedCrossRefGoogle Scholar
  93. 93.
    Boland MJ, Christman JK (2008) Characterization of Dnmt3b:thymine-DNA glycosylase interaction and stimulation of thymine glycosylase-mediated repair by DNA methyltransferase(s) and RNA. J Mol Biol 379:492–504PubMedCrossRefGoogle Scholar
  94. 94.
    Millar CB, Guy J, Sansom OJ, Selfridge J, MacDougall E, Hendrich B, Keightley PD, Bishop SM, Clarke AR, Bird A (2002) Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science 297:403–405PubMedCrossRefGoogle Scholar
  95. 95.
    Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538–6547PubMedGoogle Scholar
  96. 96.
    Valinluck V, Sowers LC (2007) Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 67:946–950PubMedCrossRefGoogle Scholar
  97. 97.
    Jeong S, Liang G, Sharma S, Lin JC, Choi SH, Han H, Yoo CB, Egger G, Yang AS, Jones PA (2009) Selective anchoring of DNA methyltransferases 3A and 3B to nucleosomes containing methylated DNA. Mol Cell Biol 29:5366–5376PubMedCrossRefGoogle Scholar
  98. 98.
    Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, Laird PW, Jones PA (2002) Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22:480–491PubMedCrossRefGoogle Scholar
  99. 99.
    Schermelleh L, Haemmer A, Spada F, Rosing N, Meilinger D, Rothbauer U, Cardoso MC, Leonhardt H (2007) Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res 35:4301–4312PubMedCrossRefGoogle Scholar
  100. 100.
    Jost JP, Siegmann M, Sun L, Leung R (1995) Mechanisms of DNA demethylation in chicken embryos. J Biol Chem 270:9734–9739PubMedCrossRefGoogle Scholar
  101. 101.
    Jost JP, Oakeley EJ, Zhu B, Benjamin D, Thiry S, Siegmann M, Jost Y (2001) 5-Methylcytosine DNA glycosylase participates in the genome-wide loss of DNA methylation occurring during mouse myoblast differentiation. Nucleic Acids Res 29:4452–4461PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Institute of Biochemistry and Genetics, Department of BiomedicineUniversity of BaselBaselSwitzerland

Personalised recommendations