Small Molecules in Cellular Reprogramming and Differentiation

Part of the Progress in Drug Research book series (PDR, volume 67)


Recent advances in somatic cell reprogramming and directed differentiation make it possible to generate patient-specific pluripotent cells and further derive functional tissue-specific cells for biomedical research and future therapies. Chemical compounds targeting enzymes or signaling proteins are powerful tools to regulate and reveal complex cellular processes and have been identified and applied to controlling cell fate and function, including stem cell maintenance, differentiation, and reprogramming. Not only are small molecules useful in generating desired cell types in vitro for various applications, but also such small molecules could be further developed as conventional therapeutics to target patient’s own cells residing in different tissues/organs for treating degenerative diseases, injuries, and cancer. Here, we will review recent studies of small molecules in controlling cell fate.


HDAC Inhibitor Somatic Cell Nuclear Transfer Definitive Endoderm GSK3 Inhibitor Cardiomyocyte Differentiation 


  1. 1.
    Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523PubMedCrossRefGoogle Scholar
  2. 2.
    Chen S, Do JT, Zhang Q, Yao S, Yan F, Peters EC, Scholer HR, Schultz PG, Ding S (2006) Self-renewal of embryonic stem cells by a small molecule. Proc Natl Acad Sci USA 103:17266–17271PubMedCrossRefGoogle Scholar
  3. 3.
    Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686PubMedCrossRefGoogle Scholar
  4. 4.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRefGoogle Scholar
  5. 5.
    Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 105:2883–2888PubMedCrossRefGoogle Scholar
  6. 6.
    Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321:699–702PubMedCrossRefGoogle Scholar
  7. 7.
    Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146PubMedCrossRefGoogle Scholar
  8. 8.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  9. 9.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  10. 10.
    Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324PubMedCrossRefGoogle Scholar
  11. 11.
    Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3:568–574PubMedCrossRefGoogle Scholar
  12. 12.
    Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR, Ding S (2008) A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2:525–528PubMedCrossRefGoogle Scholar
  13. 13.
    Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D et al (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419PubMedCrossRefGoogle Scholar
  14. 14.
    Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M et al (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650PubMedCrossRefGoogle Scholar
  15. 15.
    Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26:1269–1275PubMedCrossRefGoogle Scholar
  16. 16.
    Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A (2008) Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 6:e253PubMedCrossRefGoogle Scholar
  17. 17.
    Wernig M, Meissner A, Cassady JP, Jaenisch R (2008) c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2:10–12PubMedCrossRefGoogle Scholar
  18. 18.
    Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106PubMedCrossRefGoogle Scholar
  19. 19.
    Kim JB, Greber B, Arauzo-Bravo MJ, Meyer J, Park KI, Zaehres H, Scholer HR (2009) Direct reprogramming of human neural stem cells by OCT4. Nature 461:649–643PubMedCrossRefGoogle Scholar
  20. 20.
    Abujarour R, Ding S (2009) Induced pluripotent stem cells free of exogenous reprogramming factors. Genome Biol 10:220PubMedCrossRefGoogle Scholar
  21. 21.
    Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949PubMedCrossRefGoogle Scholar
  22. 22.
    Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953PubMedCrossRefGoogle Scholar
  23. 23.
    Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801PubMedCrossRefGoogle Scholar
  24. 24.
    Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775PubMedCrossRefGoogle Scholar
  25. 25.
    Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770PubMedCrossRefGoogle Scholar
  26. 26.
    Gonzalez F, Barragan Monasterio M, Tiscornia G, Montserrat Pulido N, Vassena R, Batlle Morera L, Rodriguez Piza I, Izpisua Belmonte JC (2009) Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc Natl Acad Sci USA 106:8918–8922PubMedCrossRefGoogle Scholar
  27. 27.
    Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476PubMedCrossRefGoogle Scholar
  28. 28.
    Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384PubMedCrossRefGoogle Scholar
  29. 29.
    Li W, Zhou H, Abujarour R, Zhu S, Joo JY, Lin T, Hao E, Scholer HR, Hayek A, Ding S (2009) Generation of human induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27:2992–3000PubMedGoogle Scholar
  30. 30.
    Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797PubMedCrossRefGoogle Scholar
  31. 31.
    Lyssiotis CA, Foreman RK, Staerk J, Garcia M, Mathur D, Markoulaki S, Hanna J, Lairson LL, Charette BD, Bouchez LC et al (2009) Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci USA 106:8912–8917PubMedCrossRefGoogle Scholar
  32. 32.
    Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm HS, Hao E, Hayek A et al (2009) A chemical platform for improved induction of human iPSCs. Nat Methods 6:805–808PubMedCrossRefGoogle Scholar
  33. 33.
    Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, Loh KM, Carter AC, Di Giorgio FP, Koszka K et al (2009) A small-molecule inhibitor of Tgf-beta signaling replaces Sox2 in reprogramming by inducing nanog. Cell Stem Cell 5:491–503PubMedCrossRefGoogle Scholar
  34. 34.
    Kubicek S, O'Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, Rea S, Mechtler K, Kowalski JA, Homon CA et al (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25:473–481PubMedCrossRefGoogle Scholar
  35. 35.
    Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y, Cedar H, Bergman Y (2006) G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 8:188–194PubMedCrossRefGoogle Scholar
  36. 36.
    Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49–55PubMedCrossRefGoogle Scholar
  37. 37.
    Brueckner B, Garcia Boy R, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, Suhai S, Wiessler M, Lyko F (2005) Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 65:6305–6311PubMedCrossRefGoogle Scholar
  38. 38.
    Kishigami S, Mizutani E, Ohta H, Hikichi T, Thuan NV, Wakayama S, Bui HT, Wakayama T (2006) Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem Biophys Res Commun 340:183–189PubMedCrossRefGoogle Scholar
  39. 39.
    Rybouchkin A, Kato Y, Tsunoda Y (2006) Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer. Biol Reprod 74:1083–1089PubMedCrossRefGoogle Scholar
  40. 40.
    Marson A, Foreman R, Chevalier B, Bilodeau S, Kahn M, Young RA, Jaenisch R (2008) Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell 3:132–135PubMedCrossRefGoogle Scholar
  41. 41.
    Maherali N, Hochedlinger K (2009) Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr Biol 19:1718–1723PubMedCrossRefGoogle Scholar
  42. 42.
    Chen S, Zhang Q, Wu X, Schultz PG, Ding S (2004) Dedifferentiation of lineage-committed cells by a small molecule. J Am Chem Soc 126:410–411PubMedCrossRefGoogle Scholar
  43. 43.
    Li W, Wei W, Zhu S, Zhu J, Shi Y, Lin T, Hao E, Hayek A, Deng H, Ding S (2009) Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4:16–19PubMedCrossRefGoogle Scholar
  44. 44.
    Schramm M, Thomas G, Towart R, Franckowiak G (1983) Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature 303:535–537PubMedCrossRefGoogle Scholar
  45. 45.
    Warashina M, Min KH, Kuwabara T, Huynh A, Gage FH, Schultz PG, Ding S (2006) A synthetic small molecule that induces neuronal differentiation of adult hippocampal neural progenitor cells. Angew Chem Int Ed Engl 45:591–593PubMedCrossRefGoogle Scholar
  46. 46.
    Saxe JP, Wu H, Kelly TK, Phelps ME, Sun YE, Kornblum HI, Huang J (2007) A phenotypic small-molecule screen identifies an orphan ligand-receptor pair that regulates neural stem cell differentiation. Chem Biol 14:1019–1030PubMedCrossRefGoogle Scholar
  47. 47.
    Ding S, Wu TY, Brinker A, Peters EC, Hur W, Gray NS, Schultz PG (2003) Synthetic small molecules that control stem cell fate. Proc Natl Acad Sci USA 100:7632–7637PubMedCrossRefGoogle Scholar
  48. 48.
    Schneider JW, Gao Z, Li S, Farooqi M, Tang TS, Bezprozvanny I, Frantz DE, Hsieh J (2008) Small-molecule activation of neuronal cell fate. Nat Chem Biol 4:408–410PubMedCrossRefGoogle Scholar
  49. 49.
    Yu IT, Park JY, Kim SH, Lee JS, Kim YS, Son H (2009) Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology 56:473–480PubMedCrossRefGoogle Scholar
  50. 50.
    Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397PubMedCrossRefGoogle Scholar
  51. 51.
    Takahashi T, Lord B, Schulze PC, Fryer RM, Sarang SS, Gullans SR, Lee RT (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107:1912–1916PubMedCrossRefGoogle Scholar
  52. 52.
    Wu X, Ding S, Ding Q, Gray NS, Schultz PG (2004) Small molecules that induce cardiomyogenesis in embryonic stem cells. J Am Chem Soc 126:1590–1591PubMedCrossRefGoogle Scholar
  53. 53.
    Wei ZL, Petukhov PA, Bizik F, Teixeira JC, Mercola M, Volpe EA, Glazer RI, Willson TM, Kozikowski AP (2004) Isoxazolyl-serine-based agonists of peroxisome proliferator-activated receptor: design, synthesis, and effects on cardiomyocyte differentiation. J Am Chem Soc 126:16714–16715PubMedCrossRefGoogle Scholar
  54. 54.
    Willems E, Bushway PJ, Mercola M (2009) Natural and synthetic regulators of embryonic stem cell cardiogenesis. Pediatr Cardiol 30:635–642PubMedCrossRefGoogle Scholar
  55. 55.
    Xu Y, Shi Y, Ding S (2008) A chemical approach to stem-cell biology and regenerative medicine. Nature 453:338–344PubMedCrossRefGoogle Scholar
  56. 56.
    Chen S, Hilcove S, Ding S (2006) Exploring stem cell biology with small molecules. Mol Biosyst 2:18–24PubMedCrossRefGoogle Scholar
  57. 57.
    Ueno S, Weidinger G, Osugi T, Kohn AD, Golob JL, Pabon L, Reinecke H, Moon RT, Murry CE (2007) Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci USA 104:9685–9690PubMedCrossRefGoogle Scholar
  58. 58.
    Naito AT, Shiojima I, Akazawa H, Hidaka K, Morisaki T, Kikuchi A, Komuro I (2006) Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci USA 103:19812–19817PubMedCrossRefGoogle Scholar
  59. 59.
    Qyang Y, Martin-Puig S, Chiravuri M, Chen S, Xu H, Bu L, Jiang X, Lin L, Granger A, Moretti A et al (2007) The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway. Cell Stem Cell 1:165–179PubMedCrossRefGoogle Scholar
  60. 60.
    Nemir M, Croquelois A, Pedrazzini T, Radtke F (2006) Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling. Circ Res 98:1471–1478PubMedCrossRefGoogle Scholar
  61. 61.
    Schroeder T, Meier-Stiegen F, Schwanbeck R, Eilken H, Nishikawa S, Hasler R, Schreiber S, Bornkamm GW, Nishikawa S, Just U (2006) Activated Notch1 alters differentiation of embryonic stem cells into mesodermal cell lineages at multiple stages of development. Mech Dev 123:570–579PubMedCrossRefGoogle Scholar
  62. 62.
    Sadek H, Hannack B, Choe E, Wang J, Latif S, Garry MG, Garry DJ, Longgood J, Frantz DE, Olson EN et al (2008) Cardiogenic small molecules that enhance myocardial repair by stem cells. Proc Natl Acad Sci USA 105:6063–6068PubMedCrossRefGoogle Scholar
  63. 63.
    Graichen R, Xu X, Braam SR, Balakrishnan T, Norfiza S, Sieh S, Soo SY, Tham SC, Mummery C, Colman A et al (2008) Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76:357–370PubMedCrossRefGoogle Scholar
  64. 64.
    Sachinidis A, Schwengberg S, Hippler-Altenburg R, Mariappan D, Kamisetti N, Seelig B, Berkessel A, Hescheler J (2006) Identification of small signalling molecules promoting cardiac-specific differentiation of mouse embryonic stem cells. Cell Physiol Biochem 18:303–314PubMedCrossRefGoogle Scholar
  65. 65.
    D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401PubMedCrossRefGoogle Scholar
  66. 66.
    Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452PubMedCrossRefGoogle Scholar
  67. 67.
    Borowiak M, Maehr R, Chen S, Chen AE, Tang W, Fox JL, Schreiber SL, Melton DA (2009) Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4:348–358PubMedCrossRefGoogle Scholar
  68. 68.
    Chen S, Borowiak M, Fox JL, Maehr R, Osafune K, Davidow L, Lam K, Peng LF, Schreiber SL, Rubin LL et al (2009) A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 5:258–265PubMedCrossRefGoogle Scholar
  69. 69.
    Zhu S, Wurdak H, Wang J, Lyssiotis CA, Peters EC, Cho CY, Wu X, Schultz PG (2009) A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell 4:416–426PubMedCrossRefGoogle Scholar
  70. 70.
    Tropepe V, Hitoshi S, Sirard C, Mak TW, Rossant J, van der Kooy D (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30:65–78PubMedCrossRefGoogle Scholar
  71. 71.
    Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21:183–186PubMedCrossRefGoogle Scholar
  72. 72.
    Kim M, Habiba A, Doherty JM, Mills JC, Mercer RW, Huettner JE (2009) Regulation of mouse embryonic stem cell neural differentiation by retinoic acid. Dev Biol 328:456–471PubMedCrossRefGoogle Scholar
  73. 73.
    Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280PubMedCrossRefGoogle Scholar
  74. 74.
    Smith JR, Vallier L, Lupo G, Alexander M, Harris WA, Pedersen RA (2008) Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol 313:107–117PubMedCrossRefGoogle Scholar
  75. 75.
    Itsykson P, Ilouz N, Turetsky T, Goldstein RS, Pera MF, Fishbein I, Segal M, Reubinoff BE (2005) Derivation of neural precursors from human embryonic stem cells in the presence of noggin. Mol Cell Neurosci 30:24–36PubMedCrossRefGoogle Scholar
  76. 76.
    Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22:152–165PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of ChemistryThe Scripps Research InstituteLa JollaUSA

Personalised recommendations