Advertisement

Epigenetic Mechanisms in Acute Myeloid Leukemia

  • Antoine H. F. M. Peters
  • Juerg Schwaller
Chapter
Part of the Progress in Drug Research book series (PDR, volume 67)

Abstract

Acute leukemia is characterized by clonal expansion of hematopoietic stem and progenitor cells with blocked differentiation. Clinical and experimental evidences suggest that acute myeloid leukemia (AML) is the product of several functionally cooperating genetic alterations including chromosomal translocations leading to expression of leukemogenic fusion proteins. Several AML-associated lesions target chromatin regulators like histone methyltransferases or histone acetyltransferases, including mixed-lineage leukemia 1 (MLL1) or CREB bindung protein/p300. Molecular and biochemical studies start to provide useful insights into the mechanisms of targeting and mode-of-action of such leukemogenic fusion proteins resulting in aberrant gene expression programs and AML. Chromatin modulating mechanisms are also mediating the transforming activity of key drivers of leukemogenesis by aberrant recruitment of corepressors. Recent large-scale screening efforts demonstrated that both aberrant DNA promoter methylation and aberrantly expressed microRNAs play an important role in the pathogenesis of AML as well. Current efforts to therapeutically exploit the potential reversibility of epigenetic mechanisms are focused on small molecules that inhibit DNA methyltransferases or histone deacetylases. Several phase I/II clinical trials using such compounds have reported promising, but mostly transient, clinical responses. This underscores the need to further dissect the molecular players of epigenetic mechanisms driving induction, maintenance, and potential reversibility of leukemic state to develop efficient and long-lasting targeted therapeutic strategies.

Keywords

Acute Myeloid Leukemia HDAC Inhibitor cAMP Response Element Binding Acute Myeloid Leukemia Case Core Binding Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kelly LM, Gilliland DG (2002) Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 3:179–198PubMedCrossRefGoogle Scholar
  2. 2.
    Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J, Ben Abdelali R, Macintyre E, De Braekeleer E, De Braekeleer M et al (2009) New insights to the MLL recombinome of acute leukemias. Leukemia 23:1490–1499PubMedCrossRefGoogle Scholar
  3. 3.
    Meyer C, Schneider B, Jakob S, Strehl S, Attarbaschi A, Schnittger S, Schoch C, Jansen MW, van Dongen JJ, den Boer ML et al (2006) The MLL recombinome of acute leukemias. Leukemia 20:777–784PubMedCrossRefGoogle Scholar
  4. 4.
    Krivtsov AV, Armstrong SA (2007) MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 7:823–833PubMedCrossRefGoogle Scholar
  5. 5.
    Slany RK (2009) The molecular biology of mixed lineage leukemia. Haematologica 94:984–993PubMedCrossRefGoogle Scholar
  6. 6.
    Li Z, Luo RT, Mi S, Sun M, Chen P, Bao J, Neilly MB, Jayathilaka N, Johnson DS, Wang L et al (2009) Consistent deregulation of gene expression between human and murine MLL rearrangement leukemias. Cancer Res 69(3):1109–1116PubMedCrossRefGoogle Scholar
  7. 7.
    Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD, Hess JL (2002) MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 10:1107–1117PubMedCrossRefGoogle Scholar
  8. 8.
    Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R, Dubois G, Mazo A, Croce CM, Canaani E (2002) ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 10:1119–1128PubMedCrossRefGoogle Scholar
  9. 9.
    Hublitz P, Albert M, Peters AH (2009) Mechanisms of transcriptional repression by histone lysine methylation. Int J Dev Biol 53:335–354PubMedCrossRefGoogle Scholar
  10. 10.
    Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38:413–443PubMedCrossRefGoogle Scholar
  11. 11.
    Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ (1995) Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378:505–508PubMedCrossRefGoogle Scholar
  12. 12.
    Jude CD, Climer L, Xu D, Artinger E, Fisher JK, Ernst P (2007) Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 1:324–337PubMedCrossRefGoogle Scholar
  13. 13.
    McMahon KA, Hiew SY, Hadjur S, Veiga-Fernandes H, Menzel U, Price AJ, Kioussis D, Williams O, Brady HJ (2007) Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell 1:338–345PubMedCrossRefGoogle Scholar
  14. 14.
    Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML (2005) The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123:207–218PubMedCrossRefGoogle Scholar
  15. 15.
    Jin S, Zhao H, Yi Y, Nakata Y, Kalota A, Gewirtz AM (2010) c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis. J Clin Invest 120:593–606PubMedCrossRefGoogle Scholar
  16. 16.
    Yokoyama A, Cleary ML (2008) Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14:36–46PubMedCrossRefGoogle Scholar
  17. 17.
    Maurer-Stroh S, Dickens NJ, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting CP (2003) The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci 28:69–74PubMedCrossRefGoogle Scholar
  18. 18.
    Shun MC, Botbol Y, Li X, Di Nunzio F, Daigle JE, Yan N, Lieberman J, Lavigne M, Engelman A (2008) Identification and characterization of PWWP domain residues critical for LEDGF/p75 chromatin binding and human immunodeficiency virus type 1 infectivity. J Virol 82:11555–11567PubMedCrossRefGoogle Scholar
  19. 19.
    Alvarez-Venegas R, Avramova Z (2001) Two Arabidopsis homologs of the animal trithorax genes: a new structural domain is a signature feature of the trithorax gene family. Gene 271:215–221PubMedCrossRefGoogle Scholar
  20. 20.
    Bach C, Mueller D, Buhl S, Garcia-Cuellar MP, Slany RK (2009) Alterations of the CxxC domain preclude oncogenic activation of mixed-lineage leukemia 2. Oncogene 28:815–823PubMedCrossRefGoogle Scholar
  21. 21.
    Birke M, Schreiner S, Garcia-Cuellar MP, Mahr K, Titgemeyer F, Slany RK (2002) The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res 30:958–965PubMedCrossRefGoogle Scholar
  22. 22.
    Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, Kerr AR, Deaton A, Andrews R, James KD et al (2010) CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464:1082–1086PubMedCrossRefGoogle Scholar
  23. 23.
    Cierpicki T, Risner LE, Grembecka J, Lukasik SM, Popovic R, Omonkowska M, Shultis DD, Zeleznik-Le NJ, Bushweller JH (2010) Structure of the MLL CXXC domain-DNA complex and its functional role in MLL-AF9 leukemia. Nat Struct Mol Biol 17:62–68PubMedCrossRefGoogle Scholar
  24. 24.
    Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG et al (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442:818–822PubMedCrossRefGoogle Scholar
  25. 25.
    Chen W, Kumar AR, Hudson WA, Li Q, Wu B, Staggs RA, Lund EA, Sam TN, Kersey JH (2008) Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells. Cancer Cell 13:432–440PubMedCrossRefGoogle Scholar
  26. 26.
    Guenther MG, Lawton LN, Rozovskaia T, Frampton GM, Levine SS, Volkert TL, Croce CM, Nakamura T, Canaani E, Young RA (2008) Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev 22:3403–3408PubMedCrossRefGoogle Scholar
  27. 27.
    Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, Sinha AU, Xia X, Jesneck J, Bracken AP, Silverman LB et al (2008) H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 14:355–368PubMedCrossRefGoogle Scholar
  28. 28.
    Somervaille TC, Matheny CJ, Spencer GJ, Iwasaki M, Rinn JL, Witten DM, Chang HY, Shurtleff SA, Downing JR, Cleary ML (2009) Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 4:129–140PubMedCrossRefGoogle Scholar
  29. 29.
    Faber J, Krivtsov AV, Stubbs MC, Wright R, Davis TN, van den Heuvel-Eibrink M, Zwaan CM, Kung AL, Armstrong SA (2009) HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 113:2375–2385PubMedCrossRefGoogle Scholar
  30. 30.
    Shen WF, Rozenfeld S, Kwong A, Kom ves LG, Lawrence HJ, Largman C (1999) HOXA9 forms triple complexes with PBX2 and MEIS1 in myeloid cells. Mol Cell Biol 19:3051–3061PubMedGoogle Scholar
  31. 31.
    Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G (1998) Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 17:3714–3725PubMedCrossRefGoogle Scholar
  32. 32.
    Bach C, Buhl S, Mueller D, Garcia-Cuellar MP, Maethner E, Slany RK (2010) Leukemogenic transformation by HOXA cluster genes. Blood 115:2910–2918PubMedCrossRefGoogle Scholar
  33. 33.
    Drynan LF, Pannell R, Forster A, Chan NM, Cano F, Daser A, Rabbitts TH (2005) Mll fusions generated by Cre-loxP-mediated de novo translocations can induce lineage reassignment in tumorigenesis. EMBO J 24:3136–3146PubMedCrossRefGoogle Scholar
  34. 34.
    Metzler M, Forster A, Pannell R, Arends MJ, Daser A, Lobato MN, Rabbitts TH (2006) A conditional model of MLL-AF4 B-cell tumourigenesis using invertor technology. Oncogene 25:3093–3103PubMedCrossRefGoogle Scholar
  35. 35.
    Bitoun E, Oliver PL, Davies KE (2007) The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 16:92–106PubMedCrossRefGoogle Scholar
  36. 36.
    Lin C, Smith ER, Takahashi H, Lai KC, Martin-Brown S, Florens L, Washburn MP, Conaway JW, Conaway RC, Shilatifard A (2010) AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell 37:429–437PubMedCrossRefGoogle Scholar
  37. 37.
    Mohan M, Herz HM, Takahashi YH, Lin C, Lai KC, Zhang Y, Washburn MP, Florens L, Shilatifard A (2010) Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev 24:574–589PubMedCrossRefGoogle Scholar
  38. 38.
    Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S, Sreekumar A, Zhou R, Nesvizhskii A, Chinnaiyan A, Hess JL et al (2007) A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 110:4445–4454PubMedCrossRefGoogle Scholar
  39. 39.
    Mueller D, Garcia-Cuellar MP, Bach C, Buhl S, Maethner E, Slany RK (2009) Misguided transcriptional elongation causes mixed lineage leukemia. PLoS Biol 7:e1000249PubMedCrossRefGoogle Scholar
  40. 40.
    Yokoyama A, Lin M, Naresh A, Kitabayashi I, Cleary ML (2010) A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 17:198–212PubMedCrossRefGoogle Scholar
  41. 41.
    Huret JL, Dessen P, Bernheim A (2001) An atlas of chromosomes in hematological malignancies. Example: 11q23 and MLL partners. Leukemia 15:987–989PubMedCrossRefGoogle Scholar
  42. 42.
    Peterlin BM, Price DH (2006) Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23:297–305PubMedCrossRefGoogle Scholar
  43. 43.
    Saunders A, Core LJ, Lis JT (2006) Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 7:557–567PubMedCrossRefGoogle Scholar
  44. 44.
    Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM, Su L, Xu G, Zhang Y (2005) hDOT1L links histone methylation to leukemogenesis. Cell 121:167–178PubMedCrossRefGoogle Scholar
  45. 45.
    Thiel AT, Blessington P, Zou T, Feather D, Wu X, Yan J, Zhang H, Liu Z, Ernst P, Koretzky GA et al (2010) MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 17:148–159PubMedCrossRefGoogle Scholar
  46. 46.
    van Zutven LJ, Onen E, Velthuizen SC, van Drunen E, von Bergh AR, van den Heuvel-Eibrink MM, Veronese A, Mecucci C, Negrini M, de Greef GE et al (2006) Identification of NUP98 abnormalities in acute leukemia: JARID1A (12p13) as a new partner gene. Genes Chromosomes Cancer 45:437–446PubMedCrossRefGoogle Scholar
  47. 47.
    Christensen J, Agger K, Cloos PA, Pasini D, Rose S, Sennels L, Rappsilber J, Hansen KH, Salcini AE, Helin K (2007) RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 128:1063–1076PubMedCrossRefGoogle Scholar
  48. 48.
    Klose RJ, Yan Q, Tothova Z, Yamane K, Erdjument-Bromage H, Tempst P, Gilliland DG, Zhang Y, Kaelin WG Jr (2007) The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 128:889–900PubMedCrossRefGoogle Scholar
  49. 49.
    Lee N, Zhang J, Klose RJ, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2007) The trithorax-group protein Lid is a histone H3 trimethyl-Lys4 demethylase. Nat Struct Mol Biol 14:341–343PubMedCrossRefGoogle Scholar
  50. 50.
    Lopez-Bigas N, Kisiel TA, Dewaal DC, Holmes KB, Volkert TL, Gupta S, Love J, Murray HL, Young RA, Benevolenskaya EV (2008) Genome-wide analysis of the H3K4 histone demethylase RBP2 reveals a transcriptional program controlling differentiation. Mol Cell 31:520–530PubMedCrossRefGoogle Scholar
  51. 51.
    Pasini D, Hansen KH, Christensen J, Agger K, Cloos PA, Helin K (2008) Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2. Genes Dev 22:1345–1355PubMedCrossRefGoogle Scholar
  52. 52.
    Wang GG, Song J, Wang Z, Dormann HL, Casadio F, Li H, Luo JL, Patel DJ, Allis CD (2009) Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 459:847–851PubMedCrossRefGoogle Scholar
  53. 53.
    Cloos PA, Christensen J, Agger K, Helin K (2008) Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev 22:1115–1140PubMedCrossRefGoogle Scholar
  54. 54.
    Chen J, Santillan DA, Koonce M, Wei W, Luo R, Thirman MJ, Zeleznik-Le NJ, Diaz MO (2008) Loss of MLL PHD finger 3 is necessary for MLL-ENL-induced hematopoietic stem cell immortalization. Cancer Res 68:6199–6207PubMedCrossRefGoogle Scholar
  55. 55.
    Muntean AG, Giannola D, Udager AM, Hess JL (2008) The PHD fingers of MLL block MLL fusion protein-mediated transformation. Blood 112:4690–4693PubMedCrossRefGoogle Scholar
  56. 56.
    Huang N, vom Baur E, Garnier JM, Lerouge T, Vonesch JL, Lutz Y, Chambon P, Losson R (1998) Two distinct nuclear receptor interaction domains in NSD1, a novel SET protein that exhibits characteristics of both corepressors and coactivators. EMBO J 17:3398–3412PubMedCrossRefGoogle Scholar
  57. 57.
    Rayasam GV, Wendling O, Angrand PO, Mark M, Niederreither K, Song L, Lerouge T, Hager GL, Chambon P, Losson R (2003) NSD1 is essential for early post-implantation development and has a catalytically active SET domain. EMBO J 22:3153–3163PubMedCrossRefGoogle Scholar
  58. 58.
    Brown J, Jawad M, Twigg SR, Saracoglu K, Sauerbrey A, Thomas AE, Eils R, Harbott J, Kearney L (2002) A cryptic t(5;11)(q35;p15.5) in 2 children with acute myeloid leukemia with apparently normal karyotypes, identified by a multiplex fluorescence in situ hybridization telomere assay. Blood 99:2526–2531PubMedCrossRefGoogle Scholar
  59. 59.
    Jaju RJ, Fidler C, Haas OA, Strickson AJ, Watkins F, Clark K, Cross NC, Cheng JF, Aplan PD, Kearney L et al (2001) A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood 98:1264–1267PubMedCrossRefGoogle Scholar
  60. 60.
    Rosati R, La Starza R, Veronese A, Aventin A, Schwienbacher C, Vallespi T, Negrini M, Martelli MF, Mecucci C (2002) NUP98 is fused to the NSD3 gene in acute myeloid leukemia associated with t(8;11)(p11.2;p15). Blood 99:3857–3860PubMedCrossRefGoogle Scholar
  61. 61.
    Wang GG, Cai L, Pasillas MP, Kamps MP (2007) NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 9:804–812PubMedCrossRefGoogle Scholar
  62. 62.
    Baker LA, Allis CD, Wang GG (2008) PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks. Mutat Res 647:3–12PubMedCrossRefGoogle Scholar
  63. 63.
    Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8:983–994PubMedCrossRefGoogle Scholar
  64. 64.
    Douglas J, Hanks S, Temple IK, Davies S, Murray A, Upadhyaya M, Tomkins S, Hughes HE, Cole TR, Rahman N (2003) NSD1 mutations are the major cause of Sotos syndrome and occur in some cases of Weaver syndrome but are rare in other overgrowth phenotypes. Am J Hum Genet 72:132–143PubMedCrossRefGoogle Scholar
  65. 65.
    Kurotaki N, Imaizumi K, Harada N, Masuno M, Kondoh T, Nagai T, Ohashi H, Naritomi K, Tsukahara M, Makita Y et al (2002) Haploinsufficiency of NSD1 causes Sotos syndrome. Nat Genet 30:365–366PubMedCrossRefGoogle Scholar
  66. 66.
    Martinez-Glez V, Lapunzina P (2007) Sotos syndrome is associated with leukemia/lymphoma. Am J Med Genet A 143A:1244–1245PubMedCrossRefGoogle Scholar
  67. 67.
    Chesi M, Nardini E, Lim RS, Smith KD, Kuehl WM, Bergsagel PL (1998) The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 92:3025–3034PubMedGoogle Scholar
  68. 68.
    Stec I, Wright TJ, van Ommen GJ, de Boer PA, van Haeringen A, Moorman AF, Altherr MR, den Dunnen JT (1998) WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf–Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma. Hum Mol Genet 7:1071–1082PubMedCrossRefGoogle Scholar
  69. 69.
    Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ, Kaneda Y (2009) A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf–Hirschhorn syndrome. Nature 460:287–291PubMedCrossRefGoogle Scholar
  70. 70.
    Angrand PO, Apiou F, Stewart AF, Dutrillaux B, Losson R, Chambon P (2001) NSD3, a new SET domain-containing gene, maps to 8p12 and is amplified in human breast cancer cell lines. Genomics 74:79–88PubMedCrossRefGoogle Scholar
  71. 71.
    Berdasco M, Ropero S, Setien F, Fraga MF, Lapunzina P, Losson R, Alaminos M, Cheung NK, Rahman N, Esteller M (2009) Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc Natl Acad Sci USA 106:21830–21835PubMedCrossRefGoogle Scholar
  72. 72.
    Yang XJ (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32:959–976PubMedCrossRefGoogle Scholar
  73. 73.
    Kung AL, Rebel VI, Bronson RT, Ch’ng LE, Sieff CA, Livingston DM, Yao TP (2000) Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev 14:272–277PubMedGoogle Scholar
  74. 74.
    Rebel VI, Kung AL, Tanner EA, Yang H, Bronson RT, Livingston DM (2002) Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci USA 99:14789–14794PubMedCrossRefGoogle Scholar
  75. 75.
    Kasper LH, Boussouar F, Ney PA, Jackson CW, Rehg J, van Deursen JM, Brindle PK (2002) A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis. Nature 419:738–743PubMedCrossRefGoogle Scholar
  76. 76.
    Sandberg ML, Sutton SE, Pletcher MT, Wiltshire T, Tarantino LM, Hogenesch JB, Cooke MP (2005) c-Myb and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev Cell 8:153–166PubMedCrossRefGoogle Scholar
  77. 77.
    Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M, Ohki M, Hayashi Y (1997) Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood 90:4699–4704PubMedGoogle Scholar
  78. 78.
    Sobulo OM, Borrow J, Tomek R, Reshmi S, Harden A, Schlegelberger B, Housman D, Doggett NA, Rowley JD, Zeleznik-Le NJ (1997) MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc Natl Acad Sci USA 94:8732–8737PubMedCrossRefGoogle Scholar
  79. 79.
    Wang J, Iwasaki H, Krivtsov A, Febbo PG, Thorner AR, Ernst P, Anastasiadou E, Kutok JL, Kogan SC, Zinkel SS et al (2005) Conditional MLL-CBP targets GMP and models therapy-related myeloproliferative disease. EMBO J 24:368–381PubMedCrossRefGoogle Scholar
  80. 80.
    Niitsu N, Hayashi Y, Honma Y (2001) Downregulation of MLL-CBP fusion gene expression is associated with differentiation of SN-1 cells with t(11;16)(q23;p13). Oncogene 20:375–384PubMedCrossRefGoogle Scholar
  81. 81.
    Borrow J, Stanton VP Jr, Andresen JM, Becher R, Behm FG, Chaganti RS, Civin CI, Disteche C, Dube I, Frischauf AM et al (1996) The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 14:33–41PubMedCrossRefGoogle Scholar
  82. 82.
    Panagopoulos I, Fioretos T, Isaksson M, Samuelsson U, Billstrom R, Strombeck B, Mitelman F, Johansson B (2001) Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet 10:395–404PubMedCrossRefGoogle Scholar
  83. 83.
    Kitabayashi I, Aikawa Y, Nguyen LA, Yokoyama A, Ohki M (2001) Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ-CBP fusion protein. EMBO J 20:7184–7196PubMedCrossRefGoogle Scholar
  84. 84.
    Katsumoto T, Aikawa Y, Iwama A, Ueda S, Ichikawa H, Ochiya T, Kitabayashi I (2006) MOZ is essential for maintenance of hematopoietic stem cells. Genes Dev 20:1321–1330PubMedCrossRefGoogle Scholar
  85. 85.
    Thomas T, Corcoran LM, Gugasyan R, Dixon MP, Brodnicki T, Nutt SL, Metcalf D, Voss AK (2006) Monocytic leukemia zinc finger protein is essential for the development of long-term reconstituting hematopoietic stem cells. Genes Dev 20:1175–1186PubMedCrossRefGoogle Scholar
  86. 86.
    Rokudai S, Aikawa Y, Tagata Y, Tsuchida N, Taya Y, Kitabayashi I (2009) Monocytic leukemia zinc finger (MOZ) interacts with p53 to induce p21 expression and cell-cycle arrest. J Biol Chem 284:237–244PubMedCrossRefGoogle Scholar
  87. 87.
    Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Vire E, Nomdedeu JF, Jenuwein T, Pelicci PG, Minucci S et al (2007) Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 11:513–525PubMedCrossRefGoogle Scholar
  88. 88.
    Camos M, Esteve J, Jares P, Colomer D, Rozman M, Villamor N, Costa D, Carrio A, Nomdedeu J, Montserrat E et al (2006) Gene expression profiling of acute myeloid leukemia with translocation t(8;16)(p11;p13) and MYST3-CREBBP rearrangement reveals a distinctive signature with a specific pattern of HOX gene expression. Cancer Res 66:6947–6954PubMedCrossRefGoogle Scholar
  89. 89.
    Carapeti M, Aguiar RC, Goldman JM, Cross NC (1998) A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91:3127–3133PubMedGoogle Scholar
  90. 90.
    Liang J, Prouty L, Williams BJ, Dayton MA, Blanchard KL (1998) Acute mixed lineage leukemia with an inv(8)(p11q13) resulting in fusion of the genes for MOZ and TIF2. Blood 92:2118–2122PubMedGoogle Scholar
  91. 91.
    Deguchi K, Ayton PM, Carapeti M, Kutok JL, Snyder CS, Williams IR, Cross NC, Glass CK, Cleary ML, Gilliland DG (2003) MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3:259–271PubMedCrossRefGoogle Scholar
  92. 92.
    Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N, Rowan R, Amaral S, Curley D, Williams IR et al (2004) MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6:587–596PubMedCrossRefGoogle Scholar
  93. 93.
    Collins HM, Kindle KB, Matsuda S, Ryan C, Troke PJ, Kalkhoven E, Heery DM (2006) MOZ-TIF2 alters cofactor recruitment and histone modification at the RARbeta2 promoter: differential effects of MOZ fusion proteins on CBP- and MOZ-dependent activators. J Biol Chem 281:17124–17133PubMedCrossRefGoogle Scholar
  94. 94.
    Kindle KB, Troke PJ, Collins HM, Matsuda S, Bossi D, Bellodi C, Kalkhoven E, Salomoni P, Pelicci PG, Minucci S et al (2005) MOZ-TIF2 inhibits transcription by nuclear receptors and p53 by impairment of CBP function. Mol Cell Biol 25:988–1002PubMedCrossRefGoogle Scholar
  95. 95.
    Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM (1998) ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci USA 95:10860–10865PubMedCrossRefGoogle Scholar
  96. 96.
    Barbetti V, Gozzini A, Rovida E, Morandi A, Spinelli E, Fossati G, Mascagni P, Lubbert M, Dello Sbarba P, Santini V (2008) Selective anti-leukaemic activity of low-dose histone deacetylase inhibitor ITF2357 on AML1/ETO-positive cells. Oncogene 27:1767–1778PubMedCrossRefGoogle Scholar
  97. 97.
    Liu S, Shen T, Huynh L, Klisovic MI, Rush LJ, Ford JL, Yu J, Becknell B, Li Y, Liu C et al (2005) Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. Cancer Res 65:1277–1284PubMedCrossRefGoogle Scholar
  98. 98.
    Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr, Evans RM (1998) Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391:811–814PubMedCrossRefGoogle Scholar
  99. 99.
    Boukarabila H, Saurin AJ, Batsche E, Mossadegh N, van Lohuizen M, Otte AP, Pradel J, Muchardt C, Sieweke M, Duprez E (2009) The PRC1 Polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. Genes Dev 23:1195–1206PubMedCrossRefGoogle Scholar
  100. 100.
    Martens JH, Brinkman AB, Simmer F, Francoijs KJ, Nebbioso A, Ferrara F, Altucci L, Stunnenberg HG (2010) PML-RARalpha/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell 17:173–185PubMedCrossRefGoogle Scholar
  101. 101.
    Hoemme C, Peerzada A, Behre G, Wang Y, McClelland M, Nieselt K, Zschunke M, Disselhoff C, Agrawal S, Isken F et al (2008) Chromatin modifications induced by PML-RARalpha repress critical targets in leukemogenesis as analyzed by ChIP-Chip. Blood 111:2887–2895PubMedCrossRefGoogle Scholar
  102. 102.
    Wang K, Wang P, Shi J, Zhu X, He M, Jia X, Yang X, Qiu F, Jin W, Qian M et al (2010) PML/RARalpha targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia. Cancer Cell 17:186–197PubMedCrossRefGoogle Scholar
  103. 103.
    Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257PubMedCrossRefGoogle Scholar
  104. 104.
    Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926PubMedCrossRefGoogle Scholar
  105. 105.
    Trowbridge JJ, Snow JW, Kim J, Orkin SH (2009) DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell 5:442–449PubMedCrossRefGoogle Scholar
  106. 106.
    Broske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, Kuhl C, Enns A, Prinz M, Jaenisch R et al (2009) DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet 41:1207–1215PubMedCrossRefGoogle Scholar
  107. 107.
    Tadokoro Y, Ema H, Okano M, Li E, Nakauchi H (2007) De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J Exp Med 204:715–722PubMedCrossRefGoogle Scholar
  108. 108.
    Melki JR, Vincent PC, Clark SJ (1999) Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res 59:3730–3740PubMedGoogle Scholar
  109. 109.
    Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL, Issa JP (2001) Methylation profiling in acute myeloid leukemia. Blood 97:2823–2829PubMedCrossRefGoogle Scholar
  110. 110.
    Wong IH, Ng MH, Huang DP, Lee JC (2000) Aberrant p15 promoter methylation in adult and childhood acute leukemias of nearly all morphologic subtypes: potential prognostic implications. Blood 95:1942–1949PubMedGoogle Scholar
  111. 111.
    Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y, Sasaki H (2001) Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 97:1172–1179PubMedCrossRefGoogle Scholar
  112. 112.
    Jiang Y, Dunbar A, Gondek LP, Mohan S, Rataul M, O’Keefe C, Sekeres M, Saunthararajah Y, Maciejewski JP (2009) Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 113:1315–1325PubMedCrossRefGoogle Scholar
  113. 113.
    Bullinger L, Ehrich M, Dohner K, Schlenk RF, Dohner H, Nelson MR, van den Boom D (2010) Quantitative DNA methylation predicts survival in adult acute myeloid leukemia. Blood 115:636–642PubMedCrossRefGoogle Scholar
  114. 114.
    Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, Schifano E, Booth J, van Putten W, Skrabanek L et al (2010) DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17:13–27PubMedCrossRefGoogle Scholar
  115. 115.
    Stumpel DJ, Schneider P, van Roon EH, Boer JM, de Lorenzo P, Valsecchi MG, de Menezes RX, Pieters R, Stam RW (2009) Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 114:5490–5498PubMedCrossRefGoogle Scholar
  116. 116.
    Schafer E, Irizarry R, Negi S, McIntyre E, Small D, Figueroa ME, Melnick A, Brown P (2010) Promoter hypermethylation in MLL-r infant acute lymphoblastic leukemia: biology and therapeutic targeting. Blood 115(23):4798–4809PubMedCrossRefGoogle Scholar
  117. 117.
    Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR (2003) TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17:637–641PubMedCrossRefGoogle Scholar
  118. 118.
    Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi H, Hayashi Y (2002) LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res 62:4075–4080PubMedGoogle Scholar
  119. 119.
    Iyer LM, Tahiliani M, Rao A, Aravind L (2009) Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8:1698–1710PubMedCrossRefGoogle Scholar
  120. 120.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935PubMedCrossRefGoogle Scholar
  121. 121.
    Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, Kosmider O, Le Couedic JP, Robert F, Alberdi A et al (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360:2289–2301PubMedCrossRefGoogle Scholar
  122. 122.
    Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, Malinge S, Yao J, Kilpivaara O, Bhat R et al (2009) Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114:144–147PubMedCrossRefGoogle Scholar
  123. 123.
    Kurokawa R, Rosenfeld MG, Glass CK (2009) Transcriptional regulation through noncoding RNAs and epigenetic modifications. RNA Biol 6:233–236PubMedCrossRefGoogle Scholar
  124. 124.
    Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220:126–139PubMedCrossRefGoogle Scholar
  125. 125.
    Chen J, Odenike O, Rowley JD (2010) Leukaemogenesis: more than mutant genes. Nat Rev Cancer 10:23–36PubMedCrossRefGoogle Scholar
  126. 126.
    Wieser R, Scheideler M, Hackl H, Engelmann M, Schneckenleithner C, Hiden K, Papak C, Trajanoski Z, Sill H, Fonatsch C (2010) microRNAs in acute myeloid leukemia: expression patterns, correlations with genetic and clinical parameters, and prognostic significance. Genes Chromosomes Cancer 49:193–203PubMedGoogle Scholar
  127. 127.
    Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT, Chen P, Wang Y, Yan M, Qian Z et al (2008) Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA 105:15535–15540PubMedCrossRefGoogle Scholar
  128. 128.
    Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ, Erfurth FE, Eaton K, Lu J, Grimes HL et al (2009) Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 113:3314–3322PubMedCrossRefGoogle Scholar
  129. 129.
    Mi S, Li Z, Chen P, He C, Cao D, Elkahloun A, Lu J, Pelloso LA, Wunderlich M, Huang H et al (2010) Aberrant overexpression and function of the miR-17-92 cluster in MLL-rearranged acute leukemia. Proc Natl Acad Sci USA 107:3710–3715PubMedCrossRefGoogle Scholar
  130. 130.
    Kotani A, Ha D, Hsieh J, Rao PK, Schotte D, den Boer ML, Armstrong SA, Lodish HF (2009) miR-128b is a potent glucocorticoid sensitizer in MLL-AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221. Blood 114:4169–4178PubMedCrossRefGoogle Scholar
  131. 131.
    Kotani A, Ha D, Schotte D, den Boer ML, Armstrong SA, Lodish HF (2010) A novel mutation in the miR-128b gene reduces miRNA processing and leads to glucocorticoid resistance of MLL-AF4 acute lymphocytic leukemia cells. Cell Cycle 9:1037–1042Google Scholar
  132. 132.
    Bousquet M, Quelen C, Rosati R, Mansat-De Mas V, La Starza R, Bastard C, Lippert E, Talmant P, Lafage-Pochitaloff M, Leroux D et al (2008) Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med 205:2499–2506PubMedCrossRefGoogle Scholar
  133. 133.
    Han YC, Park CY, Bhagat G, Zhang J, Wang Y, Fan JB, Liu M, Zou Y, Weissman IL, Gu H (2010) microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med 207:475–489PubMedCrossRefGoogle Scholar
  134. 134.
    Klusmann JH, Li Z, Bohmer K, Maroz A, Koch ML, Emmrich S, Godinho FJ, Orkin SH, Reinhardt D (2010) miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev 24:478–490PubMedCrossRefGoogle Scholar
  135. 135.
    Wang ZY, Chen Z (2008) Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111:2505–2515PubMedCrossRefGoogle Scholar
  136. 136.
    Petrie K, Zelent A, Waxman S (2009) Differentiation therapy of acute myeloid leukemia: past, present and future. Curr Opin Hematol 16:84–91PubMedCrossRefGoogle Scholar
  137. 137.
    Glasow A, Barrett A, Petrie K, Gupta R, Boix-Chornet M, Zhou DC, Grimwade D, Gallagher R, von Lindern M, Waxman S et al (2008) DNA methylation-independent loss of RARA gene expression in acute myeloid leukemia. Blood 111:2374–2377PubMedCrossRefGoogle Scholar
  138. 138.
    Fazi F, Zardo G, Gelmetti V, Travaglini L, Ciolfi A, Di Croce L, Rosa A, Bozzoni I, Grignani F, Lo-Coco F et al (2007) Heterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia. Blood 109:4432–4440PubMedCrossRefGoogle Scholar
  139. 139.
    Carella C, Bonten J, Sirma S, Kranenburg TA, Terranova S, Klein-Geltink R, Shurtleff S, Downing JR, Zwarthoff EC, Liu PP et al (2007) MN1 overexpression is an important step in the development of inv(16) AML. Leukemia 21:1679–1690PubMedCrossRefGoogle Scholar
  140. 140.
    Liu T, Jankovic D, Brault L, Ehret S, Baty F, Stavropoulou V, Rossi V, Biondi A, Schwaller J (2010) Functional characterization of high levels of meningioma 1 as collaborating oncogene in acute leukemia. Leukemia 24:601–612PubMedCrossRefGoogle Scholar
  141. 141.
    Jain N, Rossi A, Garcia-Manero G (2009) Epigenetic therapy of leukemia: an update. Int J Biochem Cell Biol 41:72–80PubMedCrossRefGoogle Scholar
  142. 142.
    Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J, Klimek V, Slack J, de Castro C, Ravandi F et al (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106:1794–1803PubMedCrossRefGoogle Scholar
  143. 143.
    Silverman LR, McKenzie DR, Peterson BL, Holland JF, Backstrom JT, Beach CL, Larson RA (2006) Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol 24:3895–3903PubMedCrossRefGoogle Scholar
  144. 144.
    Blum W, Klisovic RB, Hackanson B, Liu Z, Liu S, Devine H, Vukosavljevic T, Huynh L, Lozanski G, Kefauver C et al (2007) Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol 25:3884–3891PubMedCrossRefGoogle Scholar
  145. 145.
    Cashen AF, Schiller GJ, O’Donnell MR, DiPersio JF (2010) Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. J Clin Oncol 28:556–561PubMedCrossRefGoogle Scholar
  146. 146.
    Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S, Bayar E, Lyons J, Rosenfeld CS, Cortes J et al (2004) Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2 ′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103:1635–1640PubMedCrossRefGoogle Scholar
  147. 147.
    Blum W, Garzon R, Klisovic RB, Schwind S, Walker A, Geyer S, Liu S, Havelange V, Becker H, Schaaf L et al (2010) Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci USA 107(16):7473–7478PubMedCrossRefGoogle Scholar
  148. 148.
    Jiemjit A, Fandy TE, Carraway H, Bailey KA, Baylin S, Herman JG, Gore SD (2008) p21(WAF1/CIP1) induction by 5-azacytosine nucleosides requires DNA damage. Oncogene 27:3615–3623PubMedCrossRefGoogle Scholar
  149. 149.
    Palii SS, Van Emburgh BO, Sankpal UT, Brown KD, Robertson KD (2008) DNA methylation inhibitor 5-Aza-2 ′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol 28:752–771PubMedCrossRefGoogle Scholar
  150. 150.
    Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A, Altucci L, Nervi C, Minucci S, Pelicci PG (2005) Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11:71–76PubMedCrossRefGoogle Scholar
  151. 151.
    Kramer OH, Muller S, Buchwald M, Reichardt S, Heinzel T (2008) Mechanism for ubiquitylation of the leukemia fusion proteins AML1-ETO and PML-RARalpha. FASEB J 22:1369–1379PubMedCrossRefGoogle Scholar
  152. 152.
    Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P, Alvarez R, Schiavone EM, Ferrara F, Bresciani F et al (2005) Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 11:77–84PubMedCrossRefGoogle Scholar
  153. 153.
    Mercurio C, Minucci S, Pelicci PG (2010) Histone deacetylases and epigenetic therapies of hematological malignancies. Pharmacol Res 62(1):18–34PubMedCrossRefGoogle Scholar
  154. 154.
    Garcia-Manero G, Assouline S, Cortes J, Estrov Z, Kantarjian H, Yang H, Newsome WM, Miller WH Jr, Rousseau C, Kalita A et al (2008) Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood 112:981–989PubMedCrossRefGoogle Scholar
  155. 155.
    Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107PubMedCrossRefGoogle Scholar
  156. 156.
    Gore SD, Baylin S, Sugar E, Carraway H, Miller CB, Carducci M, Grever M, Galm O, Dauses T, Karp JE et al (2006) Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 66:6361–6369PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
  2. 2.Department BiomedicineUniversity Hospital BaselBaselSwitzerland

Personalised recommendations