Skip to main content

Type 1,1-Operators Defined by Vanishing Frequency Modulation

  • Chapter
New Developments in Pseudo-Differential Operators

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 189))

Abstract

This paper presents a general definition of pseudo-differential operators of type 1, 1; the definition is shown to be the largest one that is both compatible with negligible operators and stable under vanishing frequency modulation. Elaborating counter-examples of Ching, Hörmander and Parenti-Rodino, type 1, 1-operators with unclosable graphs are proved to exist; others are shown to lack the microlocal property as they flip the wavefront set of an almost nowhere differentiable function. In contrast the definition is shown to imply the pseudo-local property, so type 1, 1-operators cannot create singularities but only change their nature. The familiar rule that the support of the argument is transported by the support of the distribution kernel is generalised to arbitrary type 1, 1-operators. A similar spectral support rule is also proved. As no restrictions appear for classical type 1, 0-operators, this is a new result which in many cases makes it unnecessary to reduce to elementary symbols. As an important tool, a convergent sequence of distributions is said to converge regularly if it moreover converges as smooth functions outside the singular support of the limit. This notion is shown to allow limit processes in extended versions of the formula relating operators and kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-M. Bony, Calcul symbolique et propagations des singularités pour les équations aux dérivées partielles non linéaires, Ann. scient. Éc. Norm. Sup. 14 (1981), 209–246.

    MATH  MathSciNet  Google Scholar 

  2. G. Bourdaud, Sur les opérateurs pseudo-différentiels à coefficients peu reguliers, Thèse, Univ. de Paris-Sud, 1983.

    Google Scholar 

  3. -, Une algèbre maximale d’opérateurs pseudo-différentiels, Comm. Partial Differential Equations 13 (1988), no. 9, 1059–1083.

    Google Scholar 

  4. C.H. Ching, Pseudo-differential operators with nonregular symbols, J. Differential Equations 11 (1972), 436–447.

    Article  MATH  MathSciNet  Google Scholar 

  5. R.R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Société Mathématique de France, Paris, 1978.

    Google Scholar 

  6. M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777–799.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1990), 34–170.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Garello, Microlocal properties for pseudodifferential operators of type 1, 1, Comm. Partial Differential Equations 19 (1994), 791–801.

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Hörmander, The Analysis of Linear Partial Differential Operators, Grundlehren der mathematischen Wissenschaften, Spring er-Ver lag, Berlin, 1983, 1985.

    Google Scholar 

  10. -, Pseudo-differential operators of type 1, 1, Comm. Partial Differential Equations 13 (1988), no. 9, 1085–1111.

    Article  MATH  MathSciNet  Google Scholar 

  11. -, Continuity of pseudo-differential operators of type 1,1, Comm. Partial Differential Equations 14 (1989), no. 2, 231–243.

    Article  MATH  MathSciNet  Google Scholar 

  12. -, Lectures on Nonlinear Differential Equations, Mathématiques & applications, vol. 26, Springer-Verlag, Berlin, 1997.

    Google Scholar 

  13. J. Johnsen, Pointwise multiplication of Besov and Triebel-Lizorkin spaces, Math. Nachr. 175 (1995), 85–133.

    Article  MATH  MathSciNet  Google Scholar 

  14. -, Domains of type 1, 1 operators: a case for Triebel-Lizorkin spaces, C. R. Acad. Sci. Paris Sér. I Math. 339 (2004), no. 2, 115–118.

    MATH  MathSciNet  Google Scholar 

  15. -, Domains of pseudo-differential operators: a case for the Trieb el-Liz orkin spaces, J. Function Spaces Appl. 3 (2005), 263–286.

    MATH  MathSciNet  Google Scholar 

  16. -, Simple proof s of nowhere-differentiability for Weierstrass’ function and cases of slow growth, Preprint R-2008-02, Aalborg University, 2008.

    Google Scholar 

  17. Y. Meyer, Régularité des solutions des équations aux dérivées partielles non linéaires (d’après J.-M. Bony), Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math. 842, Springer, Berlin, 1981, 293–302.

    Google Scholar 

  18. -, Remarques sur un théorème de J.-M. Bony, in Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980), 1981, 1–20.

    Google Scholar 

  19. C. Parenti and L. Rodino, A pseudo differential operator which shifts the wave front set, Proc. Amer. Math. Soc. 72 (1978), 251–257.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Runst, Pseudodifferential operators of the“exotic” class L1 0,1 in spaces of Besov and Trieb el-Lizorkin type, Ann. Global Anal. Geom. 3 (1985), no. 1, 13–28.

    Article  MATH  MathSciNet  Google Scholar 

  21. L. Schwartz, Théorie des Distributions, Revised and Enlarged ed., Hermann, Paris, 1966.

    MATH  Google Scholar 

  22. M.A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 1987, Translated from the 1978 Russian original by Stig I. Andersson.

    MATH  Google Scholar 

  23. X. Saint Raymond, Elementary Introduction to the Theory of Pseudodifferential Operators, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1991.

    Google Scholar 

  24. E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993.

    Google Scholar 

  25. R.H. Torres, Continuity properties of pseudodifferential operators of type 1, 1, Comm. Partial Differential Equations 15 (1990), 1313–1328.

    Article  MATH  MathSciNet  Google Scholar 

  26. H. Triebel, Theory of Function Spaces, Monographs in mathematics, 78, Birkhäuser Verlag, Basel, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Johnsen, J. (2008). Type 1,1-Operators Defined by Vanishing Frequency Modulation. In: Rodino, L., Wong, M.W. (eds) New Developments in Pseudo-Differential Operators. Operator Theory: Advances and Applications, vol 189. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8969-7_10

Download citation

Publish with us

Policies and ethics