Advertisement

Multi-dimensional inverse additive problems

  • Yonutz V. Stanchescu
Part of the Advanced Courses in Mathematics - CRM Barcelona book series (ACMBIRK)

Abstract

We will examine the extremal value of the cardinality of K±K, for finite sets of lattice points. We will also formulate and discuss various results about the exact structure of multi-dimensional sets K, assuming that doubling constant \( \sigma = \frac{{|K + K|}} {{|K|}} \) is very small.

Keywords

Parallel Line Arithmetic Progression Collinear Point Exact Structure Additive Number Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    F.A. Behrend, On sets of integers which contain no three terms in arithmetic progression, Proc. Nat. Acad. Sci. USA 32 (1946), 331–332.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Y.F. Bilu, Structure of sets with small sumset, Astérisque 258 (1999), 77–108.MathSciNetGoogle Scholar
  3. [3]
    Y.F. Bilu, V.F. Lev and I.Z. Ruzsa, Rectification principles in additive number theory. Dedicated to the memory of Paul Erdös, Discrete Comput. Geom. 19 (1998), no. 3 (Special Issue), 343–353.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    G. Bordes, Sum-sets of small upper density, Acta Arith. 119 (2005), no. 2, 187–200.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    A. Cauchy, Recherches sur les nombres, Jour. École polytechn. 9 (1813), 99–116.Google Scholar
  6. [6]
    M.C. Chang, A polynomial bound in Freiman’s theorem, Duke Math. J. 113 (2002), no. 3, 399–419.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    H. Davenport, On the addition of residue classes, Jour. London Math. Soc. 10 (1935), 30–32 and 22 (1947), 100–101.MATHCrossRefGoogle Scholar
  8. [8]
    J.-M. Deshouillers and G.A. Freiman, A step beyond Kneser’s theorem for abelian finite groups, Proc. London Math. Soc. 86 (2003), no. 1, 1–28.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    J.-M. Deshouillers, F. Hennecart and A. Plagne, On small sumsets in (ℤ/2ℤ)n, Combinatorica 24 (2004), no. 1, 53–68.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    S. Eliahou and M. Kervaire, Sumsets in vector spaces over finite fields, J. Number Theory, 71, (1998), no. 1, 12–39.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    G.A. Freiman, On the addition of finite sets I, Izv. Vyssh. Zaved. Math. 13 (1959), no. 6, 202–213.MathSciNetGoogle Scholar
  12. [12]
    -, Inverse problems of additive number theory. On the addition of sets of residues with respect to a prime modulus, Soviet Math. Dokl. 2 (1961), 1520–1522.Google Scholar
  13. [13]
    -, Inverse problems of additive number theory VI, On addition of finite sets III, Izvest. Vuz. Mathem., 3 (1962), no. 28, 151–157.MathSciNetGoogle Scholar
  14. [14]
    -, Foundations of a Structural Theory of Set Addition, Transl. Math. Monogr., vol. 37, Amer. Math. Soc., Providence, RI, 1973.Google Scholar
  15. [15]
    -, What is the structure of K if K+K is small?, Lecture Notes in Math., vol. 1240, Springer, New York, 1987, pp. 109–134.Google Scholar
  16. [16]
    -, Structure theory of set addition, Astérisque 258 (1999), 1–33.MathSciNetGoogle Scholar
  17. [17]
    -, Structure theory of set addition II. Results and problems, Paul Erdös and his mathematics, I Budapest, 1999, Bolyai Soc. Math. Stud., vol. 11, János Bolyai Math. Soc., Budapest, 2002, pp. 243–260.Google Scholar
  18. [18]
    G.A. Freiman, A. Heppes and B. Uhrin, A lower estimation for the cardinality of finite difference sets inn, Coll. Math. Soc. J. Bolyai, Budapest 51 (1989), 125–139.MathSciNetGoogle Scholar
  19. [20]
    R.J. Gardner and P. Gronchi, A Brunn-Minkowski inequality for the integer lattice, Trans. Amer. Math. Soc. 353 (2001), no. 10, 3995–4024.MATHCrossRefMathSciNetGoogle Scholar
  20. [21]
    B. Green and I.Z. Ruzsa, Sets with small sumset and rectification, Bull. London Math. Soc. 38 (2006), no. 1, 43–52.MATHCrossRefMathSciNetGoogle Scholar
  21. [22]
    B. Green and T. Tao, Compressions, convex geometry and the Freiman-Bilu theorem, Q. J. Math. 57 (2006), no. 4, 495–504.MATHCrossRefMathSciNetGoogle Scholar
  22. [23]
    D.J. Grynkiewicz and O. Serra, Properties of two dimensional sets with small sumset, arXIv:0710.3127 vl.Google Scholar
  23. [24]
    J.H.B. Kemperman, On small sumsets in an abelian group, Acta Math. 103 (1960), 63–88.MATHCrossRefMathSciNetGoogle Scholar
  24. [25]
    M. Kneser, Abschätzungen der asymptotischen Dichte von Summenmengen, Math. Z. 58 (1953), 459–484.MATHCrossRefMathSciNetGoogle Scholar
  25. [26]
    V.F. Lev, On small sumsets in abelian groups. Structure theory of set addition, Astérisque 258 (1999), xv, 317–321.MathSciNetGoogle Scholar
  26. [27]
    M.B. Nathanson, Additive Number Theory: The Classical Bases, Grad. Texts in Math., vol. 164, Springer, New York, 1996.MATHGoogle Scholar
  27. [28]
    -, Additive Number Theory: Inverse Problems and the Geometry of the Sumsets, Grad. Texts in Math., vol. 165, Springer, New York, 1996.MATHGoogle Scholar
  28. [29]
    J. Pitman, Sumsets of finite Beatty sequences. In honor of Aviezri Fraenkel on the occasion of his 70th birthday. Electron. J. Combin. 8 (2001), no. 2, Research Paper 15, 23 pp.Google Scholar
  29. [30]
    K.F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.MATHCrossRefMathSciNetGoogle Scholar
  30. [31]
    I.Z. Ruzsa, Arithmetical progressions and the number of sums, Period. Math. Hungar. 25 (1992), no. 1, 105–111.MATHCrossRefMathSciNetGoogle Scholar
  31. [32]
    -, Generalized arithmetical progressions and sumsets, Acta Math. Hung. 65 (1994), no. 4, 379–388.MATHCrossRefMathSciNetGoogle Scholar
  32. [33]
    -, Sums of sets in several dimensions, Combinatorica 14 (1994), no. 4, 485–490.MATHCrossRefMathSciNetGoogle Scholar
  33. [34]
    I.Z. Ruzsa and B. Green, Freiman’s theorem in an arbitrary abelian group, J. London Math. Soc. (2) 75 (2007), no. 1, 163–175.Google Scholar
  34. [35]
    T. Sanders, Three term arithmetic progressions in sumsets, arXiv:0611304 v1, to appear in Proc. Edinb. Math. Soc.Google Scholar
  35. [36]
    Y.V. Stanchescu, On finite difference sets in3, Proceedings of the Conference on the Structure Theory of Set Addition, CIRM, Marseille, 1993, pp. 149–162.Google Scholar
  36. [37]
    -, On addition of two distinct sets of integers, Acta Arith. 75 (1996), no. 2, 191–194.MathSciNetGoogle Scholar
  37. [38]
    -, On the structure of sets with small doubling property on the plane (I), Acta Arith. 83 (1998) no. 2, 127–141.MathSciNetGoogle Scholar
  38. [39]
    -, On finite difference sets, Acta Math. Hungar. 79 (1998), no. 1–2, 123–138.MATHCrossRefMathSciNetGoogle Scholar
  39. [40]
    -, On the simplest inverse problem for sums of sets in several dimensions, Combinatorica 18 (1998) no. 1, 139–149.MATHCrossRefMathSciNetGoogle Scholar
  40. [41]
    -, On the structure of sets of lattice points in the plane with a small doubling property, Astérisque 258 (1999), 217–240.MathSciNetGoogle Scholar
  41. [42]
    -, An upper bound for d-dimensional difference sets, Combinatorica 21 (2001), no. 4, 591–595.MATHCrossRefMathSciNetGoogle Scholar
  42. [43]
    -, Planar sets containing no three collinear points on a line and nonaveraging sets of integers, Discrete Mathematics 256 (2002), no. 1–2, 387–395.MATHCrossRefMathSciNetGoogle Scholar
  43. [44]
    -, On the structure of sets with small doubling property on the plane (II), Integers 8, (2008), no. 2, A10, 1–20.MathSciNetGoogle Scholar
  44. [45]
    -, Three dimensional sets with small sumset, Combinatorica 28 (2008), no. 3, 343–355.MATHCrossRefMathSciNetGoogle Scholar
  45. [46]
    -, The structure of d-dimensional sets with small sumset, submitted.Google Scholar
  46. [47]
    T. Tao and H.V. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math., vol. 105, Cambridge University Press, 2006.Google Scholar
  47. [48]
    B. Uhrin, Some estimations useful in geometry of numbers, Period. Math. Hungar. 11 (1980), 95–103.MATHCrossRefMathSciNetGoogle Scholar
  48. [49]
    -, On a generalization of Minkowski convex body theorem, J. Number Theory, 13 (1981), 192–209.MATHCrossRefMathSciNetGoogle Scholar
  49. [50]
    A.G. Vosper, The critical pairs of subsets of a group of prime order, J. London Math. Soc. 31 (1956), 200–205; Addendum, 280–286.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 2009

Authors and Affiliations

  • Yonutz V. Stanchescu
    • 1
  1. 1.Department of MathematicsAfeka Academic CollegeTel AvivIsrael

Personalised recommendations