Skip to main content

Part of the book series: Advanced Courses in Mathematics - CRM Barcelona ((ACMBIRK))

Abstract

Let ℕ, ℕ0, ℤ and ℕd denote, respectively, the sets of positive integers, non-negative integers, integers and d-dimensional integral lattice points. Let G denote an arbitrary abelian group and let X denote an arbitrary abelian semigroup, written additively. Let |S| denote the cardinality of the set S. For any sets A and B, we write A∼B if their symmetric difference is finite, that is, if |(A \ B) ∪ (B \ A) | < ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. A. Biró, Divisibility of integer polynomials and tilings of the integers, Acta Arith. 118 (2005), no. 2, 117–127.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Bukh, Sums of dilates, arXiv preprint 0711.1610, 2007.

    Google Scholar 

  3. J. W. S. Cassels, Über Basen der natürlichen Zahlenreihe, Abh. Math. Sem. Univ. Hamburg 21 (1975), 247–257.

    Article  MathSciNet  Google Scholar 

  4. G. A. Dirac, Note on a problem in additive number theory, J. London Math. Soc. 26 (1951), 312–313.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Erdős and M. B. Nathanson, Oscillations of bases for the natural numbers, Proc. Amer. Math. Soc. 53 (1975), no. 2, 253–258.

    Article  MathSciNet  Google Scholar 

  6. -, Partitions of the natural numbers into infinitely oscillating bases and non-bases, Comment. Math. Helv. 51 (1976), no. 2, 171–182.

    Article  MathSciNet  Google Scholar 

  7. -, Systems of distinct representatives and minimal bases in additive number theory, Number Theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979.), Lecture Notes in Math., vol. 751, Springer, Berlin, 1979, pp. 89–107.

    Chapter  Google Scholar 

  8. P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941), 212–215.

    Article  MathSciNet  Google Scholar 

  9. Y. O. Hamidoune, An application of connectivity theory in graphs to factorizations of elements in groups, European J. Combin. 2 (1981), no. 4, 349–355.

    MATH  MathSciNet  Google Scholar 

  10. -, A note on minimal directed graphs with given girth, J. Combin. Theory Ser. B 43 (1987), no. 3, 343–348.

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Härtter, Ein Beitrag zur Theorie der Minimalbasen, J. Reine Angew. Math. 196 (1956), 170–204.

    MATH  MathSciNet  Google Scholar 

  12. P. V. Hegarty, Some explicit constructions of sets with more sums than differences, Acta Arith. 130 (2007), 61–77.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. V. Hegarty and S. J. Miller, When almost all sets are difference dominated, arXiv preprint 0707.3417, 2007.

    Google Scholar 

  14. J. Hennefeld, Asymptotic non-bases which are not subsets of maximal aymptotic non-bases, Proc. Amer. Math. Soc. 62 (1977), 23–24.

    Article  MATH  MathSciNet  Google Scholar 

  15. C. Vinuesa, J. Cilleruelo and M. Silva, A sumset problem, preprint, 2008.

    Google Scholar 

  16. J. H. B. Kemperman, On complexes in a semigroup, Indag. Math. 18 (1956), 247–254.

    MathSciNet  Google Scholar 

  17. M. N. Kolountzakis, Translational tilings of the integers with long periods, Electron. J. Combin. 10 (2003), Research Paper 22, 9 pp.

    Google Scholar 

  18. Z. Ljujic and M. B. Nathanson, Complementing sets of integers with respect to a multiset, preprint, 2008.

    Google Scholar 

  19. G. Martin and K. O’Brvant, Many sets have more sums than differences, Additive Combinatorics, CRM Proc. Lecture Notes, vol. 43, Amer. Math. Soc., Providence, RI, 2007, pp. 287–305.

    Google Scholar 

  20. J. C. M. Nash and M. B. Nathanson, Cofinite subsets of asymptotic bases for the positive integers, J. Number Theory 20 (1985), no. 3, 363–372.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. B. Nathanson, Sums of finite sets of integers, Amer. Math. Monthly 79 (1972), 1010–1012.

    Article  MATH  MathSciNet  Google Scholar 

  22. -, Minimal bases and maximal non-bases in additive number theory, J. Number Theory 6 (1974), 324–333.

    Article  MATH  MathSciNet  Google Scholar 

  23. -, s-maximal non-bases of density zero, J. London Math. Soc. (2) 15 (1977), no. 1, 29–34. MR MR0435021 (55 #7983)

    Article  MATH  MathSciNet  Google Scholar 

  24. -, Unique representation bases for the integers, Acta Arith. 108 (2003), no. 1, 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  25. -, The inverse problem for representation functions of additive bases, Number Theory (New York, 2003), Springer, New York, 2004, pp. 253–262.

    Google Scholar 

  26. -, Every function is the representation function of an additive basis for the integers, Port. Math. (N.S.) 62 (2005), no. 1, 55–72.

    MATH  MathSciNet  Google Scholar 

  27. -, The Caccetta-Häggkvist conjecture and additive number theory, arXiv: math.CO/0603469, 2006.

    Google Scholar 

  28. -, Sets with more sums than differences, Integers 7 (2007), paper A5, 24 pp.

    Google Scholar 

  29. -, Inverse problems for linear forms over finite sets of integers, J. Ramanujan Math. Soc. 23 (2008), no. 2, 1–15.

    MathSciNet  Google Scholar 

  30. -, Problems in additive number theory, I, Additive Combinatorics, CRM Proc. Lecture Notes, vol. 43, Amer. Math. Soc., Providence, RI, 2007, pp. 263–270.

    Google Scholar 

  31. -, Problems in additive number theory, II: Linear forms and complementing sets of integers, J. Théor. Nombres Bordeaux, to appear.

    Google Scholar 

  32. -, Supersequences, rearrangements of sequences, and the spectrum of bases in additive number theory, arXiv preprint 0806.0984, 2008.

    Google Scholar 

  33. M. B. Nathanson, K. O’Bryant, B. Orosz, I. Ruzsa, and M. Silva, Binary linear forms over finite sets of integers, Acta Arith. 129 (2007), 341–361.

    Article  MATH  MathSciNet  Google Scholar 

  34. D. J. Newman, Tesselation of integers, J. Number Theory 9 (1977), no. 1, 107–111.

    Article  MATH  MathSciNet  Google Scholar 

  35. I. Z. Ruzsa, Appendix in R. Tijdeman, “Periodicity and almost-periodicity”, 2006.

    Google Scholar 

  36. R. Tijdeman, Periodicity and Almost-Periodicity, More Sets, Graphs and Numbers, Bolyai Soc. Math. Stud., vol. 15, Springer, Berlin, 2006, pp. 381–405.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag

About this chapter

Cite this chapter

Nathanson, M.B. (2009). Problems in additive number theory, III. In: Combinatorial Number Theory and Additive Group Theory. Advanced Courses in Mathematics - CRM Barcelona. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8962-8_21

Download citation

Publish with us

Policies and ethics