Advertisement

Abstract

The next collection of exercises is deliberately vague. The number of points is my estimate for the difficulty. This naturally depends on expertise; some of them were told in the course; then naturally the difficulty turns to 0.

Keywords

Arithmetic Progression Acta Arith Newton Polyhedron Impact Function Abelian Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    V. Bergelson and I.Z. Ruzsa, Sumsets in difference sets, Israel J. Math., to appear.Google Scholar
  2. [2]
    Y. Bilu, Structure of sets with small sumset, Structure theory of set addition, Astérisque, vol. 258, Soc. Mat. France, 1999, pp. 77–108.MathSciNetGoogle Scholar
  3. [3]
    N.N. Bogolyubov, Some algebraical properties of almost periods, Zap. Kafedry Mat. Fiziki Kiev 4 (1939), 185–194.Google Scholar
  4. [4]
    J. Bourgain, On triples in arithmetic progression, Geom. Funct Anal. 9 (1999), 968–984.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Mei-Chu Chang, A polynomial bound in Freiman’s theorem, preprint.Google Scholar
  6. [6]
    J. van der Corput, On sets of integers I, II, III, Proc. K. ned. Akad. Wet. 50 (1947), 252–262, 340–350, 429–435.MATHGoogle Scholar
  7. [7]
    György Elekes and Zoltán Király, On the combinatorics of projective mappings, Algebraic Combin. 14 (2001), 183–197.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    E. Følner, Generalization of a theorem of Bogoliuboff to topological Abelian groups. With an appendix on Banach mean values in non-Abelian groups, Math. Scandinavica 2 (1954), 5–18.Google Scholar
  9. [9]
    -, Note on a generalization of a theorem of Bogoliuboff, Math. Scandinavica 2 (1954), 224–226.Google Scholar
  10. [10]
    G. Freiman, Inverse problems in additive number theory VI. On the addition of finite sets III, Izv. Vyss. Ucebn. Zaved. Matematika 3 (28) (1962), 151–157 (in Russian).MathSciNetGoogle Scholar
  11. [11]
    -, Foundations of a structural theory of set addition, Amer. Math. Soc., 1973.Google Scholar
  12. [12]
    G. Freiman and V. P. Pigaev, The relation between the invariants r and t (russian), Kalinin. Gos. Univ. Moscow (1973), pp. 172–174.Google Scholar
  13. [13]
    R. J. Gardner and P. Gronchi, A Brunn-Minkowski inequality for the integer lattice, Trans. Amer. Math. Soc. 353 (2001), 3995–4024.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    W. T. Gowers, A new proof of Szemerédi’s theorem for arithmetic progressions of length four, Geom. Funct. Anal. 8 (1998), 529–551.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    -, A new proof of Szemerédi’s theorem Geom. Funct. Anal. 11 (2001), 465–88.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    A. Granville, An introduction to additive combinatorics, Additive Combinatorics (Providence, RI, USA), CRM Proceedings and Lecture Notes, vol. 43, Amer. Math. Soc., 2007, pp. 1–27.Google Scholar
  17. [17]
    B. J. Green and I. Z. Ruzsa, Freiman’s theorem in an arbitrary Abelian group, J. London Math. Soc. 75 (2007), 163–175.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    K. Gyarmati, S. Konyagin, and I. Z. Ruzsa, Double and triple sums modulo a prime, Additive Combinatorics (Providence, RI, USA) (A. Granville, M.B. Nathanson, and J. Solymosi, eds.), CRM Proceedings and Lecture Notes, vol. 43, Amer. Math. Soc., 2007, pp. 271–277.Google Scholar
  19. [19]
    K. Gyarmati, M. Matolcsi, and I. Z. Ruzsa, Plünnecke’s inequality for different summands, in preparation.Google Scholar
  20. [20]
    -, A superadditivity and submultiplicativity property for cardinalities of sumsets, Combinatorica, to appear.Google Scholar
  21. [21]
    H. Halberstam and K. F. Roth, Sequences, 2nd ed., Springer, 1983.Google Scholar
  22. [22]
    P. Hegedűs, G. Piroska, and I. Z. Ruzsa, On the Schnirelmann density of sumsets, Publ. Math. Debrecen 53 (1998), 333–345.MathSciNetGoogle Scholar
  23. [23]
    F. Hennecart, G. Robert, and A. Yudin, On the number of sums and differences, Structure theory of set addition, Astérisque vol. 258, Soc. Mat. France, 1999, pp. 173–178.MathSciNetGoogle Scholar
  24. [24]
    J. H. B. Kemperman, On products of sets in a locally compact group, Fund. Math. 56 (1964), 51–68.MATHMathSciNetGoogle Scholar
  25. [25]
    A. G. Khovanskii, Newton polyhedron, Hilbert polynomial, and sums of finite sets, Funct. Anal. Appl. 26 (1992), 276–281.CrossRefMathSciNetGoogle Scholar
  26. [26]
    -, Sums of finite sets, orbits of commutative semigroups, and hilbert functions, Funct. Anal. Appl. 29 (1995), 102–112.CrossRefMathSciNetGoogle Scholar
  27. [27]
    M. Kneser, Abschätzungen der asymptotischen Dichte von Summenmengen, Math. Z. 58 (1953), 459–484.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    -Summenmengen in, lokalkompakten Abelschen Gruppen, Math. Z. 66 (1956), 88–110.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    I. Kříž, Large independent sets in shift-invariant graphs, Graphs Combin. 3, (1987), 145–158.MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    B. Lepson, Certain best possible results in the theory of Schnirelmann density, Proc. Amer. Math. Soc. 1 (1950), 592–594.MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    V. F. Lev and P. Smeliansky, On addition of two distinct sets of integers, Acta Arith. 70 (1995), 85–91.MATHMathSciNetGoogle Scholar
  32. [32]
    Yu. V. Linnik, On Erdős’s theorem on the addition of numerical sequences, Mat. Sbornik 10 (52) (1942), 67–78.MathSciNetGoogle Scholar
  33. [33]
    A. M. Macbeath, On measure of sum sets II., Proc. Cambridge Philos. Soc. 49 (1953), 40–43.MATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    J. L. Malouf, On a theorem of Plünnecke concerning the sum of a basis and a set of positive density, J. Number Theory 54 (1995), 12–22.MATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    M. B. Nathanson, Additive number theory: Inverse problems and the geometry of sumsets, Springer, 1996.Google Scholar
  36. [36]
    -, Growth of sumsets in abelian semigroups, Semigroup Forum 61 (2000), 149–153.Google Scholar
  37. [37]
    M. B. Nathanson and I. Z. Ruzsa, Polynomial growth of sumsets in abelian semigroups, J. Theor. Nombres Bordeaux 14 (2002), 553–560.MATHMathSciNetGoogle Scholar
  38. [38]
    Oystein Ore, Theory of graphs, Amer. Math. Soc., Providence, RI, USA, 1962. (reprints 1967, 1974).MATHGoogle Scholar
  39. [39]
    H. Plünnecke, Über die Dichte der Summe zweier Mengen, deren eine die Dichte Null hat, J. Reine Angew. Math. 205 (1960), 1–20.MATHMathSciNetGoogle Scholar
  40. [40]
    -, Eigenschaften und Abschätzungen von Wirkungsfunktionen, Gesellschaft für Mathematik und Darenverarbeitung, Bonn, 1969.Google Scholar
  41. [41]
    -, Eine zahlentheoretische Anwendung der, Graphtheorie, J. Reine Angew. Math. 243 (1970), 171–183.MATHMathSciNetGoogle Scholar
  42. [42]
    D. A. Raikov, On the addition of point sets in the sense of Schnirelmann, Mat. Sb. 5 (1939), 425–440.MATHMathSciNetGoogle Scholar
  43. [43]
    C. A. Rogers and G. C. Shephard, The difference body of a convex body, Arch. Math. 8 (1957), 220–233.MATHCrossRefMathSciNetGoogle Scholar
  44. [44]
    I. Z. Ruzsa, On difference sets Studia Sci. Math. Hungar 13 (1978), 319–326.MATHMathSciNetGoogle Scholar
  45. [45]
    -, On the cardinality of A+A and A−A, Combinatorics Proc. Fifth Hungarian Colloq. (Keszthely 1976), Colloq. Math. Soc. J. Bolyai, vol. 18, North-Holland, Amsterdam, 1978, pp. 933–938.Google Scholar
  46. [46]
    -, Essential components, Proc. London Math. Soc. 54 (1987) 38–56.Google Scholar
  47. [47]
    -, An additive property of squares and primes, Acta Arith. 49 (1988), 281–289.Google Scholar
  48. [48]
    -, An additive problem for powers of primes, J. Number Theory 33 (1989), 71–82.Google Scholar
  49. [49]
    -, An application of graph theory to additive number theory, Sci., Ser. A Math. Sci. (N.S.) 3 (1989), 97–109.Google Scholar
  50. [50]
    -, Addendum to: An application of graph theory to additive number theory, Sci., Ser. A Math. Sci. (N.S.) 4 (1990/91), 93–94.Google Scholar
  51. [51]
    -, Diameter of sets and measure of sumsets, Monatsh. Math. 112 (1991), 323–328.Google Scholar
  52. [52]
    -, Arithmetical progressions and the number of sums, Period. Math. Hungar. 25 (1992), 105–111.Google Scholar
  53. [53]
    -, A concavity property for the measure of product sets in groups, Fund. Math. 140 (1992), 247–254.Google Scholar
  54. [54]
    -, On the number of sums and differences, Acta Math. Hungar. 59 (1992), 439–447.Google Scholar
  55. [55]
    -, Generalized arithmetical progressions and sumsets, Acta Math. Hungar. 65 (1994), 379–388.Google Scholar
  56. [56]
    -, Sum of sets in several dimensions, Combinatorica 14 (1994), 485–490.Google Scholar
  57. [57]
    -, Sets of sums and commutative graphs, Studia Sci. Math. Hungar. 30 (1995), 127–148.Google Scholar
  58. [58]
    -, Sums of finite sets, Number Theory, New York Seminar 1991–1995 (D. V. Chudnovsky, G. V. Chudnovsky, and M. B. Nathanson, eds.), Springer, New York, 1996, pp. 281–293.Google Scholar
  59. [59]
    -, The Brunn-Minkowski inequality and nonconvex sets, Geom. Dedicata 67 (1997), 337–348.Google Scholar
  60. [60]
    A. Schields, Sur la mesure d’une somme vectorielle, Fund. Math. 42 (1955), 57–60.MathSciNetGoogle Scholar
  61. [61]
    E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 299–345.Google Scholar

Copyright information

© Birkhäuser Verlag 2009

Personalised recommendations