The Resultant Matrix and its Generalizations. II. The Continual Analogue of the Resultant Operator

  • Israel Gohberg
  • Georg Heinig
Part of the Operator Theory: Advances and Applications book series (OT, volume 206)


Let A(λ) and B(λ) (λ ∈ ℂ1) be entire functions of the form \( \mathcal{A}(\lambda ) = a_0 + \int_0^\tau {a(t)e^{i\lambda t} dt} , \mathcal{B}(\lambda ) = b_0 + \int_{ - \tau }^0 {b(t)e^{i\lambda t} dt} , \) where a 0, b 0 ∈ ℂ1, a(t) ∈ L 1(0, τ), b(t) ∈ L 1(−τ, 0), and τ is some positive number.


Entire Function Vector Function Resultant Operator Operator Function Matrix Function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I.C. Gohberg and G. Heinig, The resultant matrix and its generalizations. I. The resultant operator for matrix polynomials. Acta Sci. Math. (Szeged) 37 (1975), 41–61 (in Russian). English translation: this volume. MR0380471 (52 #1371), Zbl 0298.15013.MATHMathSciNetGoogle Scholar
  2. [2]
    I.C. Gohberg and M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert space. Nauka, Moscow, 1965 (in Russian). MR0220070 (36 #3137), Zbl 0138.07803. English translation: Introduction to the Theory of Linear Nonselfadjoint Operators. Amer. Math. Soc., Providence, R.I. 1969. MR0246142 (39 #7447), Zbl 0181.13504. French translation: Introduction à la Théorie des Opérateurs Linéaires non Auto-Adjoints Dans un Espace Hilbertien. Dunod, Paris, 1971. MR0350445 (50 #2937).Google Scholar
  3. [3]
    I.C. Gohberg and E.I. Sigal, An operator generalization of the logarithmic residue theorem and the theorem of Rouché. Matem. Sbornik, New Ser. 84(126) (1971), 607 629 (in Russian). English translation: Math. USSR Sbornik 13 (1971), 603–625. MR0313856 (47 #2409), Zbl 0254.47046.MathSciNetGoogle Scholar
  4. [4]
    I.C. Gohberg and A.A. Semencul, The inversion of finite Toeplitz matrices and their continual analogues. Matem. Issled. 7 (1972), no. 2(24), 201–223 (in Russian). MR0353038 (50 #5524), Zbl 0288.15004.MATHMathSciNetGoogle Scholar
  5. [5]
    I.C. Gohberg and G. Heinig, Matrix integral operators on a finite interval with kernels depending on the difference of the arguments. Rev. Roumaine Math. Pures Appl. 20 (1975), 55–73 (in Russian). English translation: this volume. MR0380495 (52 #1395), Zbl 0327.45009.MathSciNetGoogle Scholar
  6. [6]
    M.G. Krein and M.A. Naimark, The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations. Khar’kov, 1936 (in Russian). English translation: Linear and Multilinear Algebra 10 (1981), no. 4, 265–308. MR0638124 (84i:12016), Zbl 0584.12018.Google Scholar
  7. [7]
    F.I. Lander, The Bezoutian and the inversion of Hankel and Toeplitz matrices. Matem. Issled. 9 (1974), no. 2(32), 69-87 (in Russian). MR0437559 (55 #10483), Zbl 0331.15017.Google Scholar
  8. [8]
    M.G. Krein, Distribution of roots of polynomials orthogonal on the unit circle with respect to a sign-alternating weight. Teor. Funkts., Funkts. Anal. Prilozh. (Khar’kov) 2 (1966), 131–137 (in Russian). MR0201702 (34 #1584), Zbl 0257.30002.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Israel Gohberg
  • Georg Heinig

There are no affiliations available

Personalised recommendations