Bortezomib in Waldenstrom’s Macroglobulinemia

  • Irene M. Ghobrial
  • Aldo M. Roccaro
  • Xavier Leleu
Part of the Milestones in Drug Therapy book series (MDT)


Waldenstrom’s macroglobulinemia (WM) is a low-grade lymphoproliferative disorder characterized by the presence of a lymphoplasmacytic infiltrate in the bone marrow and the presence of a serum monoclonal protein IgM. Despite the clinical efficacy of conventional therapies, most patients eventually relapse and the disease remains incurable. Therefore, novel therapeutic agents are needed for the treatment of WM. The multicatalytic ubiquitin–proteasome pathway plays an important role in the targeted degradation of a wide spectrum of proteins involved in the regulation of several cellular processes. The proteasome itself has been selected as a target for cancer therapy. Bortezomib represents the first proteasome inhibitor to enter clinical trials. The enthusiastic preclinical and clinical results exerted by bortezomib in multiple myeloma, as well as other hematological malignancies including WM, has validated the idea that the proteasome is an important target in cancer therapy.


Multiple Myeloma Proteasome Inhibitor Bortezomib Treatment Lymphoplasmacytic Lymphoma Chick Embryo Chorioallantoic Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Owen RG, Treon SP, Al-Katib A, Fonseca R, Greipp PR, McMaster ML et al (2003) Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s macroglobulinemia. Semin Oncol 30:110–115PubMedCrossRefGoogle Scholar
  2. 2.
    Herrinton LJ, Weiss NS (1993) Incidence of Waldenstrom’s macroglobulinemia. Blood 82:3148–3150PubMedGoogle Scholar
  3. 3.
    Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A et al (2005) Cancer statistics, 2005. CA Cancer J Clin 55(1):10–30PubMedCrossRefGoogle Scholar
  4. 4.
    Ghobrial IM, Gertz MA, Fonseca R (2003) Waldenstrom macroglobulinaemia. Lancet Oncol 4:679–685PubMedCrossRefGoogle Scholar
  5. 5.
    Ghobrial IM, Fonseca R, Gertz MA, Plevak MF, Larson DR, Therneau TM et al (2006) Prognostic model for disease-specific and overall mortality in newly diagnosed symptomatic patients with Waldenstrom macroglobulinaemia. Br J Haematol 133:158–164PubMedCrossRefGoogle Scholar
  6. 6.
    Benjamin M, Reddy S, Brawley OW (2003) Myeloma and race: a review of the literature. Cancer Metastasis Rev 22(1):87–93PubMedCrossRefGoogle Scholar
  7. 7.
    McMaster ML (2003) Familial Waldenstrom’s macroglobulinemia. Semin Oncol 30:146–152PubMedCrossRefGoogle Scholar
  8. 8.
    Kyle RA, Therneau TM, Rajkumar SV, Offord JR, Larson DR, Plevak MF et al (2003) Long-term follow-up of IgM monoclonal gammopathy of undetermined significance. Semin Oncol 30:169–171PubMedCrossRefGoogle Scholar
  9. 9.
    Morra E, Cesana C, Klersy C, Barbarano L, Varettoni M, Cavanna L et al (2004) Clinical characteristics and factors predicting evolution of asymptomatic IgM monoclonal gammopathies and IgM-related disorders. Leukemia 18:1512–1517PubMedCrossRefGoogle Scholar
  10. 10.
    Kyle RA, Treon SP, Alexanian R, Barlogie B, Bjorkholm M, Dhodapkar M et al (2003) Prognostic markers and criteria to initiate therapy in Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s macroglobulinemia. Semin Oncol 30:116–120PubMedCrossRefGoogle Scholar
  11. 11.
    Kriangkum J, Taylor BJ, Treon SP, Mant MJ, Belch AR, Pilarski LM (2004) Clonotypic IgM V/D/J sequence analysis in Waldenstrom macroglobulinemia suggests an unusual B-cell origin and an expansion of polyclonal B cells in peripheral blood. Blood 104:2134–2142PubMedCrossRefGoogle Scholar
  12. 12.
    Schop RF, Van Wier SA, Xu R, Ghobrial I, Ahmann GJ, Greipp PR et al (2006) 6q deletion discriminates Waldenstrom macroglobulinemia from IgM monoclonal gammopathy of undetermined significance. Cancer Genet Cytogenet 169:150–153PubMedCrossRefGoogle Scholar
  13. 13.
    Dimopoulos MA, Anagnostopoulos A, Kyrtsonis MC, Castritis E, Bitsaktsis A, Pangalis GA (2005) Treatment of relapsed or refractory Waldenstro¨ms macroglobulinemia with bortezomib. Haematologica 90:1655–1658PubMedGoogle Scholar
  14. 14.
    Chen CI, Kouroukis CT, White D, Voralia M, Stadtmauer E, Stewart AK et al (2007) Bortezomib is active in patients with untreated or relapsed Waldenstro¨ms macroglobulinemia: a phase II study of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25:1570–1575PubMedCrossRefGoogle Scholar
  15. 15.
    Treon SP, Hunter ZR, Matous J, Joyce RM, Mannion B, Advani R et al (2007) Multicenter clinical trial of bortezomib in relapsed/refractory Waldenstro¨ms macroglobulinemia: results of WMCTG trial 03-248. Clin Cancer Res 13:3320–3325PubMedCrossRefGoogle Scholar
  16. 16.
    Treon SP, Ioakimidis L, Soumerai JD et al (2009) Primary therapy of Waldenstrom macroglobulinemia with bortezomib, dexamethasone, and rituximab: WMCTG clinical trial 05-180. J Clin Oncol 27:3830–3835PubMedCrossRefGoogle Scholar
  17. 17.
    Williams S, Pettaway C, Song R et al (2003) Differential effects of the proteasome inhibitor bortezomib on apoptosis and angiogenesis in human prostate tumor xenografts. Mol Cancer Ther 2:835PubMedGoogle Scholar
  18. 18.
    Albanell J, Baselga J, Guix M et al (2003) Phase I study of bortezomib in combination with docetaxel in anthracycline-pretreated advanced breast cancer. Proc Am Soc Clin Oncol 22:16Google Scholar
  19. 19.
    Hideshima T, Chauhan D, Richardson P et al (2002) NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 277:16639PubMedCrossRefGoogle Scholar
  20. 20.
    Gilmore TD, Koedood M, Piffat KA et al (1996) Rel/NF-kappaB/IkappaB proteins and cancer. Oncogene 13:1367PubMedGoogle Scholar
  21. 21.
    Mitsiades N, Mitsiades CS, Poulaki V et al (2002) Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 99:4079PubMedCrossRefGoogle Scholar
  22. 22.
    Hideshima T, Chauhan D, Schlossman R et al (2001) The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 20:4519PubMedCrossRefGoogle Scholar
  23. 23.
    Mitsiades N, Mitsiades CS, Poulaki V et al (2002) Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 99:14374PubMedCrossRefGoogle Scholar
  24. 24.
    Hideshima T, Richardson P, Chauhan D et al (2001) The proteaosme inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma. Cancer Res 61:3071PubMedGoogle Scholar
  25. 25.
    Shah SA, Potter MW, McDade TP et al (2001) 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J Cell Biochem 82:110PubMedCrossRefGoogle Scholar
  26. 26.
    Ling YH, Liebes L, Mg B et al (2002) PS-341, a novel proteasome inhibitor, induces Bcl-2 phosphorilation and cleavage in association with GM-2 phase arrest and apoptosis. Mol Cancer Ther 1:841PubMedGoogle Scholar
  27. 27.
    Hideshima T, Mitsiades C, Akiyama M et al (2003) Molecular mechanisms mediating anti-myeloma activity of proteasome inhibitor PS-341. Blood 101:1530PubMedCrossRefGoogle Scholar
  28. 28.
    Roccaro A, Leleu X, Sacco A et al (2008) Dual targeting of the proteasome regulates survival and homing in Waldenstrom macroglobulinemia. Blood 111:4752–4763PubMedCrossRefGoogle Scholar
  29. 29.
    Mitsiades CS, Treon SP, Mitsiades N et al (2002) TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic implications. Blood 99:4525PubMedCrossRefGoogle Scholar
  30. 30.
    Drexler HC, Risau W, Konerding MA (2000) Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. FASEB J 14:65PubMedGoogle Scholar
  31. 31.
    Oikawa T, Sasaki T, Nakamura M et al (1998) The proteasome is involved in angiogenesis. Biochem Biophys Res Commun 246:243PubMedCrossRefGoogle Scholar
  32. 32.
    Sunwoo JB, Chen Z, Dong G et al (2001) Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res 7:1419PubMedGoogle Scholar
  33. 33.
    LeBlanc R, Catley LP, Hideshima T et al (2002) Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 62:4996PubMedGoogle Scholar
  34. 34.
    Roccaro AM, Hideshima T, Raje N et al (2006) Bortezomib targets multiple myeloma endothelial cells. Cancer Res 1:184CrossRefGoogle Scholar
  35. 35.
    Gertz MA, Rue M, Blood E et al (2004) Multicenter phase 2 trial of rituximab for Waldenstrom macroglobulinemia (WM): an Eastern Cooperative Oncology Group Study (E3A98). Leuk Lymphoma 45:2047–2055PubMedCrossRefGoogle Scholar
  36. 36.
    Dimopoulos MA, Zervas C, Zomas A et al (2002) Treatment of Waldenstrom’s macroglobulinemia with rituximab. J Clin Oncol 20:2327–2333PubMedCrossRefGoogle Scholar
  37. 37.
    Treon SP, Emmanouilides C, Kimby E et al (2005) Extended rituximab therapy in Waldenstro¨ m’s macroglobulinemia. Ann Oncol 16:132–138PubMedCrossRefGoogle Scholar
  38. 38.
    Treon SP, Soumerai JD, Branagan AR et al (2008) Thalidomide and rituximab in Waldenstrom’s macroglobulinemia. Blood 112:4452–4457PubMedCrossRefGoogle Scholar
  39. 39.
    Buske C, Hoster E, Dreyling M et al (2009) The addition of rituximab to front-line therapy with CHOP (R-CHOP) results in a higher response rate and longer time to treatment failure in patients with lymphoplasmacytic lymphoma: results of a randomized trial of the German Low-Grade Lymphoma Study Group (GLSG). Leukemia 23:153–161PubMedCrossRefGoogle Scholar
  40. 40.
    Anagnostopoulos A, Dimopoulos MA, Aleman A, Weber D, Alexanian R, Champlin R et al (2001) High-dose chemotherapy followed by stem cell transplantation in patients with resistant Waldenstrom’s macroglobulinemia. Bone Marrow Transplant 27(10):1027–1029PubMedCrossRefGoogle Scholar
  41. 41.
    Tournilhac O, Leblond V, Tabrizi R, Gressin R, Senecal D, Milpied N et al (2003) Transplantation in Waldenstrom’s macroglobulinemia – the French experience. Semin Oncol 30(2):291–296PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Irene M. Ghobrial
    • 1
  • Aldo M. Roccaro
    • 1
  • Xavier Leleu
    • 2
  1. 1.Dana-Farber Cancer Institute, Medical OncologyHarvard Medical School BostonBostonUSA
  2. 2.Department of Hematology, Service des Maladies du SangHopital HuriezLilleFrance

Personalised recommendations