Bortezomib in Mantle Cell Lymphoma

  • Andre Goy
Part of the Milestones in Drug Therapy book series (MDT)


Since its recognition as a separate subtype of non-Hodgkin lymphoma (NHL) in 1994, mantle cell lymphoma (MCL) has been a very active field of clinical research due to its typical poor outcome. Besides a small subset of patients who can enjoy long-term disease-frees urvival through non-myeloablative allogenic stem cell transplant, most patients relapse and become frequently over time chemoresistant to conventional or high-dose cytotoxic-based therapy. Thankfully a number of novel agents have shown activity in MCL, most of which target distinct newly identified pathways. Proteasome inhibitors represent the first novel biological agent with promising activity in MCL with bortezomib as first in class and firstnovel agent FDA approved in relapsed/refractory MCL. Pre-clinical studies showing impressive additive or synergistic effects with other cytotoxics or biologicals, provide a rationale for a number of ongoing studies looking at combination with conventional regimens used in MCL either with chemoimmunotherapy or as consolidation or maintenance approaches post-induction. The progress in understanding MCL biology especially regarding the heterogeneity of the disease as well as emerging predictive biomarkers (both for conventional and novel therapies), will help stratify patients and refine our management to hopefully continue to improve patients’outcome.


Proteasome Inhibitor Mantle Cell Lymphoma Autologous Stem Cell Transplantation Mantle Cell Lymphoma Cell Mantle Cell Lymphoma Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Herens C, Lambert F, Quintanilla-Martinez L et al (2008) Cyclin D1-negative mantle cell lymphoma with cryptic t(12;14)(p13;q32) and cyclin D2 overexpression. Blood 111:1745–1746PubMedCrossRefGoogle Scholar
  2. 2.
    Wlodarska I, Dierickx D, Vanhentenrijk V et al (2008) Translocations targeting CCND2, CCND3, and MYCN do occur in t(11;14)-negative mantle cell lymphomas. Blood 111:5683–5690PubMedCrossRefGoogle Scholar
  3. 3.
    Armitage JO (1998) Management of mantle cell lymphoma. Oncology (Williston Park) 12:49–55Google Scholar
  4. 4.
    Fisher RI (1996) Mantle-cell lymphoma: classification and therapeutic implications. Ann Oncol 7(Suppl 6):S35–S39PubMedCrossRefGoogle Scholar
  5. 5.
    Argatoff LH, Connors JM, Klasa RJ et al (1997) Mantle cell lymphoma: a clinicopathologic study of 80 cases. Blood 89:2067–2078PubMedGoogle Scholar
  6. 6.
    Romaguera JE, Medeiros LJ, Hagemeister FB et al (2003) Frequency of gastrointestinal involvement and its clinical significance in mantle cell lymphoma. Cancer 97:586–591PubMedCrossRefGoogle Scholar
  7. 7.
    Cohen PL, Kurtin PJ, Donovan KA, Hanson CA (1998) Bone marrow and peripheral blood involvement in mantle cell lymphoma. Br J Haematol 101:302–310PubMedCrossRefGoogle Scholar
  8. 8.
    Salek S, Vasova I, Pytlik R et al (2008) Mantle cell lymphoma international prognostic score is valid and confirmed in unselected cohort of patients treated in rituximab era. Blood 112:3745Google Scholar
  9. 9.
    Pott C, Hoster E, Böttcher S et al (2008) Molecular remission after combined immunochemotherapy is of prognostic relevance in patients with MCL: results of the randomized intergroup trials of the European MCL Network. Blood 112:582Google Scholar
  10. 10.
    Salaverria I, Zettl A, Beà S et al (2007) Specific secondary genetic alterations in mantle cell lymphoma provide prognostic information independent of the gene expression-based proliferation signature. J Clin Oncol 25:1216–1222PubMedCrossRefGoogle Scholar
  11. 11.
    Rosenwald A, Wright G, Wiestner A et al (2003) The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 3:185–197PubMedCrossRefGoogle Scholar
  12. 12.
    Herrmann A, Hoster E, Zwingers T et al (2009) Improvement of overall survival in advanced stage mantle cell lymphoma. J Clin Oncol 27:511–518PubMedCrossRefGoogle Scholar
  13. 13.
    Lenz G, Dreyling M, Hiddemann W (2004) Mantle cell lymphoma: established therapeutic options and future directions. Ann Hematol 83:71–77PubMedCrossRefGoogle Scholar
  14. 14.
    Howard OM, Gribben JG, Neuberg DS et al (2002) Rituximab and CHOP induction therapy for newly diagnosed mantle-cell lymphoma: molecular complete responses are not predictive of progression-free survival. J Clin Oncol 20:1288–1294PubMedCrossRefGoogle Scholar
  15. 15.
    Romaguera JE, Fayad L, Rodriguez MA et al (2005) High rate of durable remissions after treatment of newly diagnosed aggressive mantle-cell lymphoma with rituximab plus hyper-CVAD alternating with rituximab plus high-dose methotrexate and cytarabine. J Clin Oncol 23:7013–7023PubMedCrossRefGoogle Scholar
  16. 16.
    Romaguera R, Fayad L, Rodriguez A et al (2008) Rituximab (R) + HyperCVAD alternating with R-methotrexate/cytarabine after 9 years: continued high rate of failure-free survival in untreated mantle cell lymphoma (MCL). Blood 112:833Google Scholar
  17. 17.
    Jacobsen E, Freedman A (2004) An update on the role of high-dose therapy with autologous or allogeneic stem cell transplantation in mantle cell lymphoma. Curr Opin Oncol 16:106–113PubMedCrossRefGoogle Scholar
  18. 18.
    Sweetenham JW (2001) Stem cell transplantation for mantle cell lymphoma: should it ever be used outside clinical trials? Bone Marrow Transplant 28:813–820PubMedCrossRefGoogle Scholar
  19. 19.
    Kasamon YL (2007) Blood or marrow transplantation for mantle cell lymphoma. Curr Opin Oncol 19:128–135PubMedCrossRefGoogle Scholar
  20. 20.
    Sweetenham JW (2009) Review: stem cell transplantation for mantle cell lymphoma: not yet the standard of care. Clin Adv Hematol Oncol 7:323–324PubMedGoogle Scholar
  21. 21.
    Kahl BS, Longo WL, Eickhoff JC et al (2006) Maintenance rituximab following induction chemoimmunotherapy may prolong progression-free survival in mantle cell lymphoma: a pilot study from the Wisconsin Oncology Network. Ann Oncol 17:1418–1423PubMedCrossRefGoogle Scholar
  22. 22.
    Forstpointner R, Unterhalt M, Dreyling M et al (2006) Maintenance therapy with rituximab leads to a significant prolongation of response duration after salvage therapy with a combination of rituximab, fludarabine, cyclophosphamide, and mitoxantrone (R-FCM) in patients with recurring and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German Low Grade Lymphoma Study Group (GLSG). Blood 108:4003–4008PubMedCrossRefGoogle Scholar
  23. 23.
    Goy A (2007) Mantle cell lymphoma: evolving novel options. Curr Oncol Rep 9:391–398PubMedCrossRefGoogle Scholar
  24. 24.
    Goy A, Feldman T (2007) Expanding therapeutic options in mantle cell lymphoma. Clin Lymphoma Myeloma 7(Suppl 5):S184–S191PubMedCrossRefGoogle Scholar
  25. 25.
    Yewdell JW, Reits E, Neefjes J (2003) Making sense of mass destruction: quantitating MHC class I antigen presentation. Nat Rev Immunol 3:952–961PubMedCrossRefGoogle Scholar
  26. 26.
    Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4:349–360PubMedCrossRefGoogle Scholar
  27. 27.
    Adams J, Palombella VJ, Sausville EA et al (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622PubMedGoogle Scholar
  28. 28.
    Orlowski RZ, Stinchcombe TE, Mitchell BS et al (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20:4420–4427PubMedCrossRefGoogle Scholar
  29. 29.
    Pérez-Galán P, Roué G, Villamor N et al (2006) The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood 107:257–264PubMedCrossRefGoogle Scholar
  30. 30.
    O’Connor OA, Wright J, Moskowitz C et al (2005) Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol 23:676–684PubMedCrossRefGoogle Scholar
  31. 31.
    Strauss SJ, Maharaj L, Hoare S et al (2006) Bortezomib therapy in patients with relapsed or refractory lymphoma: potential correlation of in vitro sensitivity and tumor necrosis factor alpha response with clinical activity. J Clin Oncol 24:2105–2112PubMedCrossRefGoogle Scholar
  32. 32.
    Goy A, Younes A, McLaughlin P et al (2005) Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol 23:667–675PubMedCrossRefGoogle Scholar
  33. 33.
    Belch A, Kouroukis CT, Crump M et al (2007) A phase II study of bortezomib in mantle cell lymphoma: the National Cancer Institute of Canada Clinical Trials Group trial IND.150. Ann Oncol 18:116–121PubMedCrossRefGoogle Scholar
  34. 34.
    O’Connor OA, Moskowitz C, Portlock C et al (2009) Patients with chemotherapy-refractory mantle cell lymphoma experience high response rates and identical progression-free survivals compared with patients with relapsed disease following treatment with single agent bortezomib: results of a multicentre phase 2 clinical trial. Br J Haematol 145:34–39PubMedCrossRefGoogle Scholar
  35. 35.
    Fisher RI, Bernstein SH, Kahl BS et al (2006) Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol 24:4867–4874PubMedCrossRefGoogle Scholar
  36. 36.
    Goy A, Bernstein SH, Kahl BS et al (2009) Bortezomib in patients with relapsed or refractory mantle cell lymphoma: updated time-to-event analyses of the multicenter phase 2 PINNACLE study. Ann Oncol 20:520–525PubMedCrossRefGoogle Scholar
  37. 37.
    Gerecitano J, Portlock C, Moskowitz C et al (2009) Phase 2 study of weekly bortezomib in mantle cell and follicular lymphoma. Br J Haematol 0146(6):652–655, Jul 16CrossRefGoogle Scholar
  38. 38.
    Jagannath S, Barlogie B, Berenson JR et al (2005) Bortezomib in recurrent and/or refractory multiple myeloma. Initial clinical experience in patients with impaired renal function. Cancer 103:1195–1200PubMedCrossRefGoogle Scholar
  39. 39.
    Richardson PG, Briemberg H, Jagannath S et al (2006) Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol 24:3113–3120PubMedCrossRefGoogle Scholar
  40. 40.
    Richardson PG, Sonneveld P, Schuster MW et al (2007) Safety and efficacy of bortezomib in high-risk and elderly patients with relapsed multiple myeloma. Br J Haematol 137:429–435PubMedCrossRefGoogle Scholar
  41. 41.
    Berenson JR, Jagannath S, Barlogie B et al (2005) Safety of prolonged therapy with bortezomib in relapsed or refractory multiple myeloma. Cancer 104:2141–2148PubMedCrossRefGoogle Scholar
  42. 42.
    Lonial S, Waller EK, Richardson PG et al (2005) Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood 106:3777–3784PubMedCrossRefGoogle Scholar
  43. 43.
    Gerecitano J, Goy A, Wright J et al (2006) Drug-induced cutaneous vasculitis in patients with non-Hodgkin lymphoma treated with the novel proteasome inhibitor bortezomib: a possible surrogate marker of response? Br J Haematol 134:391–398PubMedCrossRefGoogle Scholar
  44. 44.
    Chanan-Khan A, Sonneveld P, Schuster MW et al (2008) Analysis of herpes zoster events among bortezomib-treated patients in the phase III APEX study. J Clin Oncol 26:4784–4790PubMedCrossRefGoogle Scholar
  45. 45.
    Kim SJ, Kim K, Kim BS et al (2008) Bortezomib and the increased incidence of herpes zoster in patients with multiple myeloma. Clin Lymphoma Myeloma 8:237–240PubMedCrossRefGoogle Scholar
  46. 46.
    Goy A, Bernstein SH, McDonald A et al (2007) Immunohistochemical analyses for potential biomarkers of bortezomib activity in mantle cell lymphoma from the PINNACLE phase 2 trial. Blood 110:2573Google Scholar
  47. 47.
    Gerecitano J, Gounder S, Feldstein J et al (2007) Pre-Treatment p27 and Bcl-6 staining levels correlate with response to bortezomib in non-Hodgkin lymphoma: Results from a tissue microarray analysis. Blood 110:1294Google Scholar
  48. 48.
    Goy A, Remache Y, Barkoh B et al (2004) Sensitivity, schedule-dependence and molecular effects of the proteasome inhibitor bortezomib in non-Hodgkin's lymphoma cells. Blood 104:389aGoogle Scholar
  49. 49.
    Weigert O, Pastore A, Rieken M et al (2007) Sequence-dependent synergy of the proteasome inhibitor bortezomib and cytarabine in mantle cell lymphoma. Leukemia 21:524–528PubMedCrossRefGoogle Scholar
  50. 50.
    Leonard J, Furman R, Feldman E et al (2005) Phase I/II trial of bortezomib + CHOP-rituximab in diffuse large B cell (DLBCL) and mantle cell lymphoma (MCL): phase I results. Blood 104:491Google Scholar
  51. 51.
    Ribrag V, Gisselbrecht C, Haioun C et al (2009) Efficacy and toxicity of 2 schedules of frontline rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone plus bortezomib in patients with B-cell lymphoma: a randomized phase 2 trial from the French Adult Lymphoma Study Group (GELA). Cancer 115(19):4540–4546, Jul 10PubMedCrossRefGoogle Scholar
  52. 52.
    Kahl B, Chang J, Eickhoff J et al (2008) VcR-CVAD produces a high complete response rate in untreated mantle cell lymphoma: a phase II study from the Wisconsin Oncology Network. Blood 112:265Google Scholar
  53. 53.
    Romaguera J, Fayad L, McLaughlin P et al (2008) Phase I trial of bortezomib in combination with rituximab-HyperCVAD/methotrexate and cytarabine for untreated mantle cell lymphoma. Blood 112:3051Google Scholar
  54. 54.
    Wiestner A, Dunleavy K, Rizzatti EG et al (2005) Potent single agent activity and tumor selectivity of bortezomib in mantle cell lymphoma: first impressions from a randomized phase ii study of EPOCH-rituximab-bortezomib in untreated mantle cell lymphoma. Blood 106:4744Google Scholar
  55. 55.
    Gerecitano JF, Portlock C, Hamlin P et al (2008) A phase I study evaluating two dosing schedules of bortezomib (Bor) with rituximab I, cyclophosphamide I and prednisone (P) in patients with relapsed/refractory indolent and mantle cell lymphomas. J Clin Oncol 26(Suppl May 20):8512Google Scholar
  56. 56.
    Drach J, Kaufmann H, Pichelmayer O et al (2006) Marked activity of bortezomib, rituximab, and dexamethasone (BORID) in heavily pretreated patients with mantle cell lymphoma. J Clin Oncol 24(Suppl 18):17522Google Scholar
  57. 57.
    Barr PM, Fu P, Lazarus HM et al (2008) Phase I dose escalation study of fludarabine, bortezomib, and rituximab for relapsed/refractory indolent and mantle cell non-Hodgkin lymphoma. J Clin Oncol 26(Suppl):8553Google Scholar
  58. 58.
    Grant S, Sullivan D, Roodman D et al (2008) Phase I trial of bortezomib (NSC 681239) and flavopiridol (NSC 649890) in patients with recurrent or refractory indolent B-cell neoplasms. Blood 112:1573Google Scholar
  59. 59.
    Moosmann PR, Heizmann M, Kotrubczik N et al (2008) Weekly treatment with a combination of bendamustine and bortezomib in relapsed or refractory indolent non-hodgkin’s lymphoma: a single-center phase 1/2 study. Blood 112:1574Google Scholar
  60. 60.
    Beaven A, Shea TC, Moore DT et al (2008) A Phase I study of bortezomib (Velcade®) plus 90yttrium labeled ibritumomab tiuxetan (Zevalin®) in patients with relapsed or refractory B-cell non-hodgkin lymphoma (NHL). Blood 112:4944Google Scholar
  61. 61.
    Simms-Waldrip T, Rodriguez-Gonzalez A, Lin T et al (2008) The aggresome pathway as a target for therapy in hematologic malignancies. Mol Genet Metab 94:283–286PubMedCrossRefGoogle Scholar
  62. 62.
    Mitsiades CS, Mitsiades NS, McMullan CJ et al (2006) Antimyeloma activity of heat shock protein-90 inhibition. Blood 107:1092–1100PubMedCrossRefGoogle Scholar
  63. 63.
    Shringarpure R, Catley L, Bhole D et al (2006) Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib. Br J Haematol 134:145–156PubMedCrossRefGoogle Scholar
  64. 64.
    Chauhan D, Li G, Shringarpure R et al (2003) Blockade of hsp27 overcomes bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res 63:6174–6177PubMedGoogle Scholar
  65. 65.
    Gabai VL, Budagova KR, Sherman MY (2005) Increased expression of the major heat shock protein Hsp72 in human prostate carcinoma cells is dispensable for their viability but confers resistance to a variety of anticancer agents. Oncogene 24:3328–3338PubMedCrossRefGoogle Scholar
  66. 66.
    Thomas X, Campos L, Le QH, Guyotat D (2005) Heat shock proteins and acute leukemias. Hematology 10:225–235PubMedCrossRefGoogle Scholar
  67. 67.
    Mitsiades CS, Mitsiades NS, McMullan CJ et al (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 101:540–545PubMedCrossRefGoogle Scholar
  68. 68.
    Pei XY, Dai Y, Grant S (2004) Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 10:3839–3852PubMedCrossRefGoogle Scholar
  69. 69.
    Stewart KA, O’Connor OA, Alsina M et al (2007) Phase I evaluation of carfilzomib (PR-171) in haematological malignancies: responses in multiple myeloma and Waldenstrom’s macroglobulinemia at well-tolerated doses. J Clin Oncol 25(Suppl 18):8003Google Scholar
  70. 70.
    Yewdell JW (2005) Immunoproteasomes: regulating the regulator. Proc Natl Acad Sci USA 102:9089–9090PubMedCrossRefGoogle Scholar
  71. 71.
    Gressin R, Maugendre SC, Le Gouill S et al (2008) Interim results of the RiPAD+C regimen including Velcade in front line therapy for elderly patients with mantle cell lymphoma. a phase II prospective study of the GOELAMS Group. Blood 112:1575Google Scholar
  72. 72.
    Gerecitano JF, Portlock C, Hamlin P et al (2008) A phase I study evaluating two dosing schedules of bortezomib (Bor) with rituximab I, cyclophosphamide I and prednisone (P) in patients with relapsed/refractory indolent and mantle cell lymphomas. J Clin Oncol 26(Suppl):8512Google Scholar
  73. 73.
    Weigert O, Weidmann E, Mueck R et al (2009) A novel regimen combining high dose cytarabine and bortezomib has activity in multiply relapsed and refractory mantle cell lymphoma – long-term results of a multicenter observation study. Leuk Lymphoma 50:716–722PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.John Theurer Cancer Center at HUMCHackensackUSA

Personalised recommendations