Advertisement

Bortezomib and Osteoclasts and Osteoblasts

  • Michal T. Krauze
  • G. David Roodman
Chapter
Part of the Milestones in Drug Therapy book series (MDT)

Abstract

Bortezomib is the first-in-class proteasome antagonist approved for treatment of myeloma. It is active in newly diagnosed, relapsed, and refractory patients and is now being used as a platform for combinations with other new agents for myeloma. In addition to its anti-myeloma effect, bortezomib also targets the bone microenvironment and can inhibit osteoclast formation and stimulate osteoblast activity in patients with myeloma. Potentially, combination of bortezomib with other agents that stimulate bone formation or block bone resorption will further enhance the anti-myeloma effects of bortezomib and overcome the contribution of the tumor microenvironment to myeloma growth. In this chapter, we discuss the potential mechanisms responsible for bortezomib’s effects on osteoclast and osteoblast activity in myeloma.

Keywords

Bone Mineral Density Bone Formation Multiple Myeloma Myeloma Cell Osteoclast Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Roodman GD (2009) Pathogenesis of myeloma bone disease. Leukemia 23(3):435–441PubMedCrossRefGoogle Scholar
  2. 2.
    Saad AA, Sharma M, Higa GM (2009) Treatment of multiple myeloma in the targeted therapy era. Ann Pharmacother 43(2):329–338PubMedGoogle Scholar
  3. 3.
    Mundy GR (1998) Myeloma bone disease. Eur J Cancer 34(2):246–251PubMedCrossRefGoogle Scholar
  4. 4.
    Mundy GR, Raisz LG, Cooper RA, Schechter GP, Salmon SE (1974) Evidence for the secretion of an osteoclast stimulating factor in myeloma. N Engl J Med 291(20):1041–1046PubMedCrossRefGoogle Scholar
  5. 5.
    Diamond T, Levy S, Day P, Barbagallo S, Manoharan A, Kwan YK (1997) Biochemical, histomorphometric and densitometric changes in patients with multiple myeloma: effects of glucocorticoid therapy and disease activity. Br J Haematol 97(3):641–648PubMedCrossRefGoogle Scholar
  6. 6.
    Berenson JR, Lipton A (1998) Use of bisphosphonates in patients with metastatic bone disease. Oncology (Williston Park) 12(11):1573–1579, discussion 1579–1581Google Scholar
  7. 7.
    Boissy P, Andersen TL, Lund T, Kupisiewicz K, Plesner T, Delaisse JM (2008) Pulse treatment with the proteasome inhibitor bortezomib inhibits osteoclast resorptive activity in clinically relevant conditions. Leuk Res 32(11):1661–1668PubMedCrossRefGoogle Scholar
  8. 8.
    Uy GL, Goyal SD, Fisher NM, Oza AY, Tomasson MH, Stockerl-Goldstein K, DiPersio JF, Vij R (2009) Bortezomib administered pre-auto-SCT and as maintenance therapy post transplant for multiple myeloma: a single institution phase II study. Bone Marrow Transplant 43(10):793–800PubMedCrossRefGoogle Scholar
  9. 9.
    Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG, Niesvizky R, Alexanian R, Limentani SA, Alsina M et al (2004) A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 127(2):165–172PubMedCrossRefGoogle Scholar
  10. 10.
    Jagannath S, Barlogie B, Berenson JR, Siegel DS, Irwin D, Richardson PG, Niesvizky R, Alexanian R, Limentani SA, Alsina M et al (2008) Updated survival analyses after prolonged follow-up of the phase 2, multicenter CREST study of bortezomib in relapsed or refractory multiple myeloma. Br J Haematol 143(4):537–540PubMedGoogle Scholar
  11. 11.
    Esteve FR, Roodman GD (2007) Pathophysiology of myeloma bone disease. Best Pract Res Clin Haematol 20(4):613–624PubMedCrossRefGoogle Scholar
  12. 12.
    Calvani N, Silvestris F, Cafforio P, Dammacco F (2004) Osteoclast-like cell formation by circulating myeloma B lymphocytes: role of RANK-L. Leuk Lymphoma 45(2):377–380PubMedCrossRefGoogle Scholar
  13. 13.
    Hjorth-Hansen H, Seifert MF, Borset M, Aarset H, Ostlie A, Sundan A, Waage A (1999) Marked osteoblastopenia and reduced bone formation in a model of multiple myeloma bone disease in severe combined immunodeficiency mice. J Bone Miner Res 14(2):256–263PubMedCrossRefGoogle Scholar
  14. 14.
    Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, Spencer JA, Kimlinger T, Ghobrial JM, Jia X et al (2007) Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 109(7):2708–2717PubMedGoogle Scholar
  15. 15.
    Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC (2007) Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 7(8):585–598PubMedCrossRefGoogle Scholar
  16. 16.
    Lentzsch S, Ehrlich LA, Roodman GD (2007) Pathophysiology of multiple myeloma bone disease. Hematol Oncol Clin North Am 21(6):1035–1049, viiiPubMedCrossRefGoogle Scholar
  17. 17.
    Giuliani N, Morandi F, Tagliaferri S, Colla S, Bonomini S, Sammarelli G, Rizzoli V (2006) Interleukin-3 (IL-3) is overexpressed by T lymphocytes in multiple myeloma patients. Blood 107(2):841–842PubMedCrossRefGoogle Scholar
  18. 18.
    Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I et al (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96(7):3540–3545PubMedCrossRefGoogle Scholar
  19. 19.
    Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423(6937):337–342PubMedCrossRefGoogle Scholar
  20. 20.
    Matsuzaki K, Udagawa N, Takahashi N, Yamaguchi K, Yasuda H, Shima N, Morinaga T, Toyama Y, Yabe Y, Higashio K et al (1998) Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochem Biophys Res Commun 246(1):199–204PubMedCrossRefGoogle Scholar
  21. 21.
    Roodman GD (2007) Treatment strategies for bone disease. Bone Marrow Transplant 40(12):1139–1146PubMedCrossRefGoogle Scholar
  22. 22.
    Tsukii K, Shima N, Mochizuki S, Yamaguchi K, Kinosaki M, Yano K, Shibata O, Udagawa N, Yasuda H, Suda T et al (1998) Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1 alpha, 25-dihydroxyvitamin D3, prostaglandin E2, or parathyroid hormone in the microenvironment of bone. Biochem Biophys Res Commun 246(2):337–341PubMedCrossRefGoogle Scholar
  23. 23.
    Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR et al (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13(18):2412–2424PubMedCrossRefGoogle Scholar
  24. 24.
    Sanz-Rodriguez F, Teixido J (2001) VLA-4-dependent myeloma cell adhesion. Leuk Lymphoma 41(3–4):239–245PubMedCrossRefGoogle Scholar
  25. 25.
    Tai YT, Soydan E, Song W, Fulciniti M, Kim K, Hong F, Li XF, Burger P, Rumizen MJ, Nahar S et al (2009) CS1 promotes multiple myeloma cell adhesion, clonogenic growth, and tumorigenicity via c-maf-mediated interactions with bone marrow stromal cells. Blood 113(18):4309–4318PubMedCrossRefGoogle Scholar
  26. 26.
    Shi Y, Frost PJ, Hoang BQ, Benavides A, Sharma S, Gera JF, Lichtenstein AK (2008) IL-6-induced stimulation of c-myc translation in multiple myeloma cells is mediated by myc internal ribosome entry site function and the RNA-binding protein, hnRNP A1. Cancer Res 68(24):10215–10222PubMedCrossRefGoogle Scholar
  27. 27.
    Abe M, Hiura K, Ozaki S, Kido S, Matsumoto T (2009) Vicious cycle between myeloma cell binding to bone marrow stromal cells via VLA-4-VCAM-1 adhesion and macrophage inflammatory protein-1alpha and MIP-1beta production. J Bone Miner Metab 27(1):16–23PubMedCrossRefGoogle Scholar
  28. 28.
    Shain KH, Yarde DN, Meads MB, Huang M, Jove R, Hazlehurst LA, Dalton WS (2009) Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res 69(3):1009–1015PubMedCrossRefGoogle Scholar
  29. 29.
    Perez LE, Parquet N, Shain K, Nimmanapalli R, Alsina M, Anasetti C, Dalton W (2008) Bone marrow stroma confers resistance to Apo2 ligand/TRAIL in multiple myeloma in part by regulating c-FLIP. J Immunol 180(3):1545–1555PubMedGoogle Scholar
  30. 30.
    Kumatori A, Tanaka K, Tamura T, Fujiwara T, Ichihara A, Tokunaga F, Onikura A, Iwanaga S (1990) cDNA cloning and sequencing of component C9 of proteasomes from rat hepatoma cells. FEBS Lett 264(2):279–282PubMedCrossRefGoogle Scholar
  31. 31.
    Grisham MB, Palombella VJ, Elliott PJ, Conner EM, Brand S, Wong HL, Pien C, Mazzola LM, Destree A, Parent L et al (1999) Inhibition of NF-kappa B activation in vitro and in vivo: role of 26S proteasome. Methods Enzymol 300:345–363PubMedCrossRefGoogle Scholar
  32. 32.
    Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4(5): 349–360PubMedCrossRefGoogle Scholar
  33. 33.
    Landowski TH, Megli CJ, Nullmeyer KD, Lynch RM, Dorr RT (2005) Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res 65(9):3828–3836PubMedCrossRefGoogle Scholar
  34. 34.
    Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3(3):221–227PubMedCrossRefGoogle Scholar
  35. 35.
    Hideshima T, Nakamura N, Chauhan D, Anderson KC (2001) Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 20(42):5991–6000PubMedCrossRefGoogle Scholar
  36. 36.
    Hideshima T, Chauhan D, Hayashi T, Akiyama M, Mitsiades N, Mitsiades C, Podar K, Munshi NC, Richardson PG, Anderson KC (2003) Proteasome inhibitor PS-341 abrogates IL-6 triggered signaling cascades via caspase-dependent downregulation of gp130 in multiple myeloma. Oncogene 22(52):8386–8393PubMedCrossRefGoogle Scholar
  37. 37.
    Rajkumar SV, Kyle RA (2005) Multiple myeloma: diagnosis and treatment. Mayo Clin Proc 80(10):1371–1382PubMedCrossRefGoogle Scholar
  38. 38.
    von Metzler I, Krebbel H, Hecht M, Manz RA, Fleissner C, Mieth M, Kaiser M, Jakob C, Sterz J, Kleeberg L et al (2007) Bortezomib inhibits human osteoclastogenesis. Leukemia 21(9):2025–2034CrossRefGoogle Scholar
  39. 39.
    Terpos E, Sezer O, Croucher P, Dimopoulos MA (2007) Myeloma bone disease and proteasome inhibition therapies. Blood 110(4):1098–1104PubMedCrossRefGoogle Scholar
  40. 40.
    Pennisi A, Li X, Ling W, Khan S, Zangari M, Yaccoby S (2009) The proteasome inhibitor, bortezomib suppresses primary myeloma and stimulates bone formation in myelomatous and nonmyelomatous bones in vivo. Am J Hematol 84(1):6–14PubMedCrossRefGoogle Scholar
  41. 41.
    Qiang YW, Hu B, Chen Y, Zhong Y, Shi B, Barlogie B, Shaughnessy JD Jr (2009) Bortezomib induces osteoblast differentiation via Wnt-independent activation of beta-catenin/TCF signaling. Blood 113(18):4319–4330PubMedCrossRefGoogle Scholar
  42. 42.
    Silvestris F, Ciavarella S, De Matteo M, Tucci M, Dammacco F (2009) Bone-resorbing cells in multiple myeloma: osteoclasts, myeloma cell polykaryons, or both? Oncologist 14(3): 264–275PubMedCrossRefGoogle Scholar
  43. 43.
    McConkey DJ (2009) Bortezomib paradigm shift in myeloma. Blood 114(5):931–932PubMedCrossRefGoogle Scholar
  44. 44.
    Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dang L, Castro A, Palombella V et al (2002) NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 277(19):16639–16647PubMedCrossRefGoogle Scholar
  45. 45.
    Hideshima T, Chauhan D, Ishitsuka K, Yasui H, Raje N, Kumar S, Podar K, Mitsiades C, Hideshima H, Bonham L et al (2005) Molecular characterization of PS-341 (bortezomib) resistance: implications for overcoming resistance using lysophosphatidic acid acyltransferase (LPAAT)-beta inhibitors. Oncogene 24(19):3121–3129PubMedCrossRefGoogle Scholar
  46. 46.
    Nawrocki ST, Carew JS, Maclean KH, Courage JF, Huang P, Houghton JA, Cleveland JL, Giles FJ, McConkey DJ (2008) Myc regulates aggresome formation, the induction of Noxa, and apoptosis in response to the combination of bortezomib and SAHA. Blood 112(7): 2917–2926PubMedCrossRefGoogle Scholar
  47. 47.
    Bennett EJ, Shaler TA, Woodman B, Ryu KY, Zaitseva TS, Becker CH, Bates GP, Schulman H, Kopito RR (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448(7154):704–708PubMedCrossRefGoogle Scholar
  48. 48.
    Zangari M, Esseltine D, Lee CK, Barlogie B, Elice F, Burns MJ, Kang SH, Yaccoby S, Najarian K, Richardson P et al (2005) Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma. Br J Haematol 131(1):71–73PubMedCrossRefGoogle Scholar
  49. 49.
    Heider U, Kaiser M, Muller C, Jakob C, Zavrski I, Schulz CO, Fleissner C, Hecht M, Sezer O (2006) Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment. Eur J Haematol 77(3):233–238PubMedCrossRefGoogle Scholar
  50. 50.
    Terpos E, Heath DJ, Rahemtulla A, Zervas K, Chantry A, Anagnostopoulos A, Pouli A, Katodritou E, Verrou E, Vervessou EC et al (2006) Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. Br J Haematol 135(5):688–692PubMedCrossRefGoogle Scholar
  51. 51.
    Giuliani N, Morandi F, Tagliaferri S, Lazzaretti M, Bonomini S, Crugnola M, Mancini C, Martella E, Ferrari L, Tabilio A et al (2007) The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood 110(1):334–338PubMedCrossRefGoogle Scholar
  52. 52.
    Edwards CM (2008) Wnt signaling: bone’s defense against myeloma. Blood 112(2):216–217PubMedCrossRefGoogle Scholar
  53. 53.
    Qiang YW, Chen Y, Stephens O, Brown N, Chen B, Epstein J, Barlogie B, Shaughnessy JD Jr (2008) Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood 112(1):196–207PubMedCrossRefGoogle Scholar
  54. 54.
    Garrett IR, Chen D, Gutierrez G, Zhao M, Escobedo A, Rossini G, Harris SE, Gallwitz W, Kim KB, Hu S et al (2003) Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. J Clin Invest 111(11):1771–1782PubMedGoogle Scholar
  55. 55.
    Terpos E (2008) Bortezomib directly inhibits osteoclast function in multiple myeloma: implications into the management of myeloma bone disease. Leuk Res 32(11):1646–1647PubMedCrossRefGoogle Scholar
  56. 56.
    Smith MR, Egerdie B, Hernandez Toriz N, Feldman R, Tammela TL, Saad F, Heracek J, Szwedowski M, Ke C, Kupic A et al (2009) Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med 361(8):745–755PubMedCrossRefGoogle Scholar
  57. 57.
    Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A et al (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361(8):756–765PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of Medicine/Hematology-OncologyUniversity of PittsburghPittsburghUSA
  2. 2.Veterans Affairs Pittsburgh Healthcare System, Research and Development, Department of Medicine/Hematology-OncologyUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations