The Development of Non-Carbohydrate-Based Influenza Virus Sialidase Inhibitors

  • Hansjörg Streicher
  • Mathew Stanley
Part of the Milestones in Drug Therapy book series (MDT)


The chapter summarises the development of influenza virus sialidase inhibitors that are not structurally derived from carbohydrates, for instance sialic acid. The classification of inhibitor structures, such as the approved drugs oseltamivir and peramivir, is made based on the type of scaffold used, from six-membered aromatic systems to five-membered carbocylic scaffolds. For the most important examples, milestones and unexpected results during their development as well as the respective syntheses are discussed. The last two sections describe natural products with influenza sialidase inhibitory activity which might serve as lead structures in the future and, in brief, discuss the increasing number of in silico studies in the field.


Influenza Virus Sialic Acid Shikimic Acid Oseltamivir Carboxylate Pyridinecarboxylic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Prof. Jim Hanson for proofreading the manuscript and helpful advice.


  1. 1.
    von Itzstein M (2007) The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov 6:967–974Google Scholar
  2. 2.
    De Clerq E (2006) Antiviral agents active against influenza A viruses. Nat Rev 5:1015–1025Google Scholar
  3. 3.
    Meindl P, Bodo G, Palese P, Schulman J, Tuppy H (1974) Inhibition of neuraminidase activity by derivatives of DANA. Virology 58:457–463PubMedGoogle Scholar
  4. 4.
    Burmeister W, Henrissat B, Bosso C, Cusack S, Ruigrok RWH (1993) Influenza B virus neuraminidase can synthesize its own inhibitor. Structure 1:19–26PubMedGoogle Scholar
  5. 5.
    von Itzstein M, Wu W-Y, Kok GB, Pegg MS, Dyason JC, Jin B, Phan TV, Smythe ML, White HF, Oliver SW, Colman PM, Varghese JN, Ryan DM, Woods JM, Bethell RC, Hotham VJ, Cameron JM, Penn CR (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418–423Google Scholar
  6. 6.
    Rich J, Gehle D, von Itzstein M (eds) (2007) Design and synthesis of sialidase inhibitors for influenza virus infections. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Kiefel M, von Itzstein M (2002) Recent advances in the synthesis of sialic acid derivatives and sialylmimetics as biological probes. Chem Rev 102:471–490PubMedGoogle Scholar
  8. 8.
    Dyason JC, von Itzstein M (2001) Anti-influenza virus drug design: sialidase inhibitors. Aust J Chem 54:663–670Google Scholar
  9. 9.
    Streicher H (2002) Approaches to carboyclic sialidase inhibitors. Monatsh Chem Chem Month 133:1263–1278Google Scholar
  10. 10.
    Busse H (ed) (2007) Recent developments in the synthesis and application of sialylimetics. Scion Publishing, BloxhamGoogle Scholar
  11. 11.
    Liu Y, Zhang J, Xu W (2007) Recent progress in rational drug design of neuraminidase inhibitors. Curr Med Chem 14:2872–2891PubMedGoogle Scholar
  12. 12.
    Angata T, Varki A (2002) Chemical diversity in the sialic acids. Chem Rev 102:439–469PubMedGoogle Scholar
  13. 13.
    Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443:45–49PubMedGoogle Scholar
  14. 14.
    Williams M, Bischofberger N, Swaminathan S, Kim CU (1995) Synthesis and influenza neuraminidase inhibitory activity of aromatic analogues of sialic acid. Bioorg Med Chem Lett 5:2251–2254Google Scholar
  15. 15.
    Jedrzejas M, Singh S, Brouillette WJ, Laver WG, Air GM, Luo M (1995) Structures of aromatic inhibitors of influenza virus neuraminidase. Biochemistry 34:3144–3151PubMedGoogle Scholar
  16. 16.
    Chand P, Babu YS, Bantia S, Chu N, Cole LB, Kotian PL, Laver WG, Montgomery JA, Pathak VP, Petty SL, Shrout DP, Walsh DA, Walsh GM (1997) Design and synthesis of benzoic acid derivatives as influenza neuraminidase inhibitors using structure-based drug design. J Med Chem 40:4030–4052PubMedGoogle Scholar
  17. 17.
    Singh SJM, Air GM, Luo M, Laver WG, Brouilette WJ (1995) Structure-based inhibitors of influenza virus sialidase. A benzoic acid lead with novel interaction. J Med Chem 38:3217–3225PubMedGoogle Scholar
  18. 18.
    Chand P, Kotian PL, Morris PE, Bantia S, Walsh DA, Babu YS (2005) Synthesis and inhibitory activity of benzoic acid and pyridine derivatives on influenza neuraminidase. Bioorg Med Chem 13:2665–2678PubMedGoogle Scholar
  19. 19.
    Sudbeck E, Jedrzejas MJ, Singh S, Brouilette WJ, Air GM, Laver WG, Babu YS, Bantia S, Chand P, Chu N, Montgomery JA, Walsh DA, Luo M (1997) Guanidinobenzoic acid inhibitors of influenza virus neuraminidase. J Mol Biol 267:584–594PubMedGoogle Scholar
  20. 20.
    Howes PD, Cleasby A, Evans DN, Feilden H, Smith PW, Sollis SL, Taylor N, Wonacott AJ (1999) 4-Acetylamino-3-(imidazol-1-yl)-benzoic acids as novel inhibitors of influenza sialidase. Eur J Med Chem 34:225–234Google Scholar
  21. 21.
    Brouillette W, Atigadda VR, Luo M, Air GM, Babu YS, Bantia S (1999) Design of benzoic acid inhibitors of influenza neuraminidase containing a cyclic substitution for the N-acetyl grouping. Bioorg Med Chem Lett 9:1901–1906PubMedGoogle Scholar
  22. 22.
    Finley JB, Atigadda VR, Duarte F, Zhao JJ, Brouillette WJ, Air GM, Luo M (1999) Novel aromatic inhibitors of influenza virus neuraminidase make selective interactions with conserved residues and water molecules in the active site. J Mol Biol 293:1107–1119PubMedGoogle Scholar
  23. 23.
    Brouillette WJ, Bajpai SN, Ali SM, Velu SE, Atigadda VR, Lommer BS, Finley JB, Luo M, Air GM (2003) Pyrrolidinobenzoic acid inhibitors of influenza virus neuraminidase: modifications of essential pyrrolidinone ring substituents. Bioorg Med Chem 11:2739–2749PubMedGoogle Scholar
  24. 24.
    Atigadda VR, Brouillette W, Duarte F, Ali SM, Babu YS, Bantia S, Chand P, Chu N, Montgomery JA, Walsh DA, Sudbeck EA et al (1999) Potent inhibition of influenza sialidase by a benzoic acid containing a 2-pyrrolidinone substituent. J Med Chem 42:2332–2343PubMedGoogle Scholar
  25. 25.
    Zhang J, Wang Q, Fang H, Xu W, Liu A, Du G (2008) Design, synthesis, inhibitory activity, and SAR studies of hydrophobic p-aminosalicylic acid derivatives as neuraminidase inhibitors. Bioorg Med Chem 16:3839–3847PubMedGoogle Scholar
  26. 26.
    Flashner M, Kessler J, Tanenbaum SW (1983) The interaction of substrate-related ketals with bacterial and viral neuraminidases. Arch Biochem Biophys 221:188–196PubMedGoogle Scholar
  27. 27.
    Taylor NR, Cleasby A, Singh O, Skarzynski T, Wonacott AJ, Smith PW, Sollis SL, Howes PD, Cherry PC, Bethell R et al (1998) Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. 2. Crystallographic and molecular modeling study of complexes of 4-amino-4H-pyran-6-carboxamides and sialidase from influenza virus types A and B. J Med Chem 41:798–807PubMedGoogle Scholar
  28. 28.
    Smith PW, Sollis SL, Howes PD, Cherry PC, Starkey ID, Cobley KN, Weston H, Scicinski J, Merritt A, Whittington A et al (1998) Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure and activity relationships of 4-guanidino- and 4-amino-4H-pyran-6-carboxamides. J Med Chem 41:787–797PubMedGoogle Scholar
  29. 29.
    Wyatt PG, Coomber BA, Evans DN, Jack TI, Fulton HE, Wonacott AJ, Colman P, Varghese J (2001) Sialidase inhibitors related to zanamivir. Further SAR studies of 4-amino-4H-pyran-2-carboxylic acid-6-propylamides. Bioorg Med Chem Lett 11:669–673PubMedGoogle Scholar
  30. 30.
    Kerrigan SA, Smith PW, Stoodley RJ (2001) Synthesis of (4R*,5R*)-4-acetylamino-5-diethylcarbamoylcyclohex-1-ene-1-carboxylic acid and (3R*,4R*)-4-acetylamino-3-diethylcarbamoylcyclohex-1-ene-1-carboxylic acid: new inhibitors of influenza virus sialidases. Tetrahedron Lett 42:4709–4712Google Scholar
  31. 31.
    Taylor NR, von Itzstein M (1994) Molecular modeling studies on ligand binding to sialidase from influenza virus and the mechanism of catalysis. J Med Chem 37:616–624PubMedGoogle Scholar
  32. 32.
    Vorwerk S, Vasella A (1998) Carbocyclische analoga von NANA. Angew Chem Int Ed Engl 37:1732–1734Google Scholar
  33. 33.
    Chandler M, Conroy R, Cooper AWJ, Lamont RB, Scicinski JJ, Smart JE, Storer R, Weir NG, Wilson RD, Wyatt PG (1995) Approaches to carbocyclic analogues of the potent neuraminidase Inhibitor 4-guanidino-Neu5Ac2en. X.Ray molecular structure of N-[(1 S,2S,6R)-2-Azido-6-benzyloxymethyl-4-formylcyclohex-3-enyl]acetamide. J Chem Soc Perkin Trans 1:1189–1197Google Scholar
  34. 34.
    Kim CU, Lew W, Williams MA, Liu H, Zhang L, Swaminathan S, Bischofberger N, Chen MS, Mendel DB, Tai CY, Laver WG, Stevens RC (1997) Structure − activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. J Am Chem Soc 119:681–690PubMedGoogle Scholar
  35. 35.
    Kim C, Lew W, Williams MA, Zhang L, Chen X, Escarpe PA, Mendel DB, Laver WG, Stevens RCJ (1998) Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Med Chem 41:2451–2460PubMedGoogle Scholar
  36. 36.
    Williams MA, Lew W, Mendel DB, Tai CY, Escarpe PA, Laver WG, Stevens RC, Kim CU (1997) Structure-activity relationships of carbocyclic influenza neuraminidase inhibitors. Bioorg Med Chem Lett 7:1837–1842Google Scholar
  37. 37.
    Lew W, Wu H, Mendel DB, Escarpe PA, Chen X, Laver WG, Graves BJ, Kim CU (1998) A new series of C3-aza carbocyclic influenza neuraminidase inhibitors: synthesis and inhibitory activity. Bioorg Med Chem Lett 8:3321–3324PubMedGoogle Scholar
  38. 38.
    Lew W, Wu H, Chen X, Graves BJ, Escarpe PA, MacArthur HL, Mendel DB, Kim CU (2000) Carbocyclic influenza neuraminidase inhibitors possessing a C3-cyclic amine side chain: synthesis and inhibitory activity. Bioorg Med Chem Lett 10:1257–1260PubMedGoogle Scholar
  39. 39.
    Lew W, Williams MA, Mendel DB, Escarpe PA, Kim CU (1997) C3-Thia and C3-carba isosteres of a carbocyclic influenza neuraminidase inhibitor, (3R,4R,5 S)-4-acetamido-5-amino-3-propoxyl-1-cyclohexene-1-carboxylic acid. Bioorg Med Chem Lett 7:1843–1846Google Scholar
  40. 40.
    Zhang L, Williams MA, Mendel DB, Escarpe PA, Kim CU (1997) Synthesis and activity of C2-substituted analogs of influenza neuraminidase inhibitor GS 4071. Bioorg Med Chem Lett 7:1847–1850Google Scholar
  41. 41.
    Rohloff JC, Kent KM, Postich MJ, Becker MW, Chapman HH, Kelly DE, Lew W, Louie MS, McGee LR, Prisbe EJ et al (1998) Practical total synthesis of the anti-influenza drug GS-4104. J Org Chem 63:4545–4550Google Scholar
  42. 42.
    Abrecht S, Harrington P, Iding H, Karpf M, Trussardi R, Wirz B, Zutter U (2004) The synthetic development of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (tamiflu): a challenge for synthesis and process research. Chimia 58:621–629Google Scholar
  43. 43.
    Abrecht S, Federspiel MC, Estermann H, Fischer R, Karpf M, Mair H-J, Oberhauser T, Rimmler G, Trussardi R, Zutter U (2007) The synthetic-technical development of oseltamivir phosphate tamiflutm: a race against time. Chimia 61:93–99Google Scholar
  44. 44.
    Karpf M, Trussardi R (2009) Effizienter zugang zu oseltamivirphosphat (tamiflu) über das O-trimesylat von shikimisäureethylester. Angew Chem Int Ed Engl 121:5871–5873Google Scholar
  45. 45.
    Magano J (2009) Synthetic approaches to the neuraminidase inhibitors zanamivir (relenza) and oseltamivir phosphate (tamiflu) for the treatment of influenza. Chem Rev 109:4398–4438PubMedGoogle Scholar
  46. 46.
    Shibasaki M, Kanai M (2008) Synthetic strategies for oseltamivir phosphate. Eur J Org Chem:1839–1850Google Scholar
  47. 47.
    Fukuta Y, Mita T, Fukuda N, Kanai M, Shibasaki M (2006) De novo synthesis of tamiflu via a catalytic asymmetric ring-opening of meso-aziridines with TMSN3. J Am Chem Soc 128:6312–6313PubMedGoogle Scholar
  48. 48.
    Mita T, Fukuda N, Roca FX, Kanai M, Shibasaki M (2007) Second generation catalytic asymmetric synthesis of tamiflu: allylic substitution route. Org Lett 9:259–262PubMedGoogle Scholar
  49. 49.
    Yamatsugu K, Kamijo S, Suto Y, Kanai M, Shibasaki M (2007) A concise synthesis of Tamiflu: third generation route via the Diels–Alder reaction and the Curtius rearrangement. Tetrahedron Lett 48:1403–1406Google Scholar
  50. 50.
    Yeung Y-Y, Hong S, Corey EJ (2006) A short enantioselective pathway for the synthesis of the anti-influenza neuraminidase inhibitor oseltamivir from 1,3-butadiene and acrylic acid. J Am Chem Soc 128:6310–6311PubMedGoogle Scholar
  51. 51.
    Kipassa N, Okamura H, Kina K, Hamada T, Iwagawa T (2008) Efficient short step synthesis of Corey’s tamiflu intermediate. Org Lett 10:815–816PubMedGoogle Scholar
  52. 52.
    Bromfield K, Graden H, Hagberg DP, Olsson T, Kann N (2007) An iron carbonyl approach to the influenza neuraminidase inhibitor oseltamivir. Chem Commun: 3183–3185Google Scholar
  53. 53.
    Satoh N, Akiba T, Yokoshima S, Fukuyama T (2007) A practical synthesis of (−) oseltamivir. Angew Chem Int Ed Engl 46:5734–5736PubMedGoogle Scholar
  54. 54.
    Satoh N, Akiba T, Yokoshima S, Fukuyama T (2009) A practical synthesis of (−)-oseltamivir. Tetrahedron 65:3239–3245Google Scholar
  55. 55.
    Trost BM, Zhang T (2008) A concise synthesis of (−) oseltamivir. Angew Chem 120:3819–3821Google Scholar
  56. 56.
    Ishikawa H, Suzuki T, Hayashi Y (2009) High-yielding synthesis of the anti-influenza neuramidase inhibitor (−)-oseltamivir by three ln-one-pot-operations. Angew Chem Int Ed Engl 48:1304–1307Google Scholar
  57. 57.
    Sun H, Lin YJ, Wu YL, Wu YK (2009) A facile access to antiflu agent tamiflu/oseltamivir. Synlett: 2473–2476Google Scholar
  58. 58.
    Kamimura A, Nakano T (2010) Use of the diels-alder adduct of pyrrole in organic synthesis. Formal racemic synthesis of tamiflu. J Org Chem 75:3133–3136PubMedGoogle Scholar
  59. 59.
    Zutter U, Iding H, Spurr P, Wirz B (2008) New, efficient synthesis of oseltamivir phosphate (tamiflu) via enzymatic desymmetrization of a meso-1,3-cyclohexanedicarboxylic acid diester. J Org Chem 73:4895–4902PubMedGoogle Scholar
  60. 60.
    Shie J-J, Fang J-M, Wang S-Y, Tsai K-C, Cheng Y-SE, Yang A-S, Hsiao S-C, Su C-Y, Wong C-H (2007) Synthesis of tamiflu and its phosphonate congeners possessing potent anti-influenza activity. J Am Chem Soc: 11893–11894Google Scholar
  61. 61.
    Fleet G, Shing TKM, Warr SM (1984) Enantiospecific synthesis of shikimic acid from d-mannose: formation of a chiralcyclohexene by intramolecular olefination of a carbohydrate-derived intermediate. J Chem Soc Perkin Trans 1:905–908Google Scholar
  62. 62.
    Mirza S, Vasella A (1984) Synthesis of methyl shikimate and of diethyl phosphashikimate from d-ribose. Helv Chim Acta 67:1562–1567Google Scholar
  63. 63.
    Busse H, Streicher H (2006) Building a successful structural motif into sialylmimetics-cyclohexenephosphonate monoesters as pseudo-sialosides with promising inhibitory properties. Bioorg Med Chem 14:1047–1057PubMedGoogle Scholar
  64. 64.
    Streicher H, Meisch J, Bohner C (2001) Synthesis of xylo-configured cyclohexenephosphonates, versatile precursors of sialidase inhibtor libraries. Tetrahedron 57:8851–8859Google Scholar
  65. 65.
    Streicher H, Bohner C (2002) Synthesis of functionalized cyclohexenephosphonates and their inhibitors activity. Tetrahedron 58:7573–7581Google Scholar
  66. 66.
    Streicher H (2004) Synthesis and evaluation as sialidase inhibitors of xylo-configured cyclohexenephosphonates carrying glycerol sidechain mimics. Bioorg Med Chem Lett 14:361–364PubMedGoogle Scholar
  67. 67.
    Sullivan B, Carrera I, Drouin M, Hudlicky T (2009) Symmetry-based design for the chemoenzymatic synthesis of oseltamivir (tamiflu) from ethyl benzoate13. Angew Chem Int Ed Engl 48:4229–4231PubMedGoogle Scholar
  68. 68.
    Matveenko M, Willis AC, Banwell MG (2008) A chemoenzymatic synthesis of the anti-influenza agent Tamiflu®. Tetrahedron Lett 49:7018–7020Google Scholar
  69. 69.
    Shie J-J, Fang J-M, Wong C-H (2008) A concise and flexible synthesis of the potent anti-influenza agents tamiflu and tamiphosphor13. Angew Chem Int Ed Engl 47:5788–5791PubMedGoogle Scholar
  70. 70.
    Ma J, Zhao Y, Ng S, Zhang J, Zeng J, Than A, Chen P, Liu X-W (2010) Sugar-based synthesis of tamiflu and its inhibitory effects on cell secretion. Chem Eur J 16:4533–4540PubMedGoogle Scholar
  71. 71.
    Mandai T, Oshitari T (2009) Efficient asymmetric synthesis of oseltamivir from d-mannitol. Synlett 2009:783–786Google Scholar
  72. 72.
    Oshitari T, Mandai T (2009) Azide-free synthesis of oseltamivir from l-methionine. Synlett 2009:787–789Google Scholar
  73. 73.
    Carbain BSRM, Collins PJ, Hitchcock PB, Streicher H (2009) Galactose-conjugates of the oseltamivir pharmacophore – new tools for the characterization of influenza virus neuraminidases. Org. Biomol, Chem, 9Google Scholar
  74. 74.
    Carbain B, Collins Patrick J, Callum L, Martin Stephen R, Hay Alan J, McCauley J, Streicher H (2009) Efficient synthesis of highly active phospha-isosteres of the influenza neuraminidase inhibitor oseltamivir. ChemMedChem 4:335–337PubMedGoogle Scholar
  75. 75.
    Carbain B, Hitchcock PB, Streicher H (2010) New aspects of the Hunsdiecker-Barton halodecarboxylation–syntheses of phospha-shikimic acid and derivatives. Tetrahedron Lett 51:2717–2719Google Scholar
  76. 76.
    Kimura Y, Yamatsugu K, Kanai M, Echigo N, Kuzuhara T, Shibasaki M (2009) Design and synthesis of immobilized Tamiflu analog on resin for affinity chromatography. Tetrahedron Lett 50:3205–3208Google Scholar
  77. 77.
    Chan T-H, Xin Y-C, von Itzstein M (1997) Synthesis of phosphonic acid analogues of sialic acids (Neu5Ac and KDN) as potential sialidase inhibitors. J Org Chem 62:3500–3504Google Scholar
  78. 78.
    Wallimann K, Vasella A (1990) Phosphonic acid analogues of the N-Acetyl-2-deoxyneuraminic acids. Helv Chim Acta 73:1359–1372Google Scholar
  79. 79.
    Vasella A, Wyler R (1991) Synthesis of a phosphonic acid analogue of DANA. Helv Chim Acta 74:451–463Google Scholar
  80. 80.
    Hochgurtel M, Biesinger R, Kroth H, Piecha D, Hofmann MW, Krause S, Schaaf O, Nicolau C, Eliseev AV (2003) Ketones as building blocks for dynamic combinatorial libraries: highly active neuraminidase inhibitors generated via selection pressure of the biological target. J Med Chem 46:356–358PubMedGoogle Scholar
  81. 81.
    Hanessian S, Wang J, Montgomery D, Stoll V, Stewart KD, Kati W, Maring C, Kempf D, Hutchins C, Laver WG (2002) Design, synthesis, and neuraminidase inhibitory activity of GS-4071 analogues that utilize a novel hydrophobic paradigm. Bioorg Med Chem Lett 12:3425–3429PubMedGoogle Scholar
  82. 82.
    Jeong JW, Kim JK, Woo BY, Song BJ, Ha D-C, No Z (2004) A substrate mimetic approach for influenza neuraminidase inhibitors. Bull Korean Chem Soc 25:1575–1577Google Scholar
  83. 83.
    Reuters (2009) FDA authorizes emergency use of intravenous antiviral peramivir for 2009 H1N1 influenza for certain patients, settings.
  84. 84.
    Yamamoto T, Kumazawa H, Inami K, Teshima T, Shiba T (1992) Syntheses of sialic acid isomers with inhibitory activity against neuraminidase. Tetrahedron Lett 33:5791–5794Google Scholar
  85. 85.
    Babu YS, Chand P, Bantia S, Kotian P, Dehghani A, El Kattan Y, Lin T, Hutchison TL, Elliott AJ, Parker CD et al (2000) BCX-1812, a highly potent and selective influenza neuraminidase inhibitor. J Med Chem 43:3482–3486PubMedGoogle Scholar
  86. 86.
    Chand P, Kotian PL, Dehghani A, El-Kattan Y, Lin T-H, Hutchison TL, Babu YS, Bantia S, Elliott AJ, Montgomery JA (2001) Systematic structure-based design and stereoselective synthesis of novel multisubstituted cyclopentane derivatives with potent antiinfluenza activity. J Med Chem 44:4379–4392PubMedGoogle Scholar
  87. 87.
    Chand P, Bantia S, Kotian PL, El-Kattan Y, Lin T-H, Babu YS (2005) Comparison of the anti-influenza virus activity of cyclopentane derivatives with oseltamivir and zanamivir in vivo. Bioorg Med Chem 13:4071–4077PubMedGoogle Scholar
  88. 88.
    Mineno T, Miller MJ (2003) Stereoselective total synthesis of racemic BCX-1812 (RWJ-270201) for the development of neuraminidase inhibitors as anti-influenza agents. J Org Chem 68:6591–6596PubMedGoogle Scholar
  89. 89.
    Chand P, Babu YS, Bantia S, Rowland S, Dehghani A, Kotian PL, Hutchison TL, Ali S, Brouillette W, El-Kattan Y et al (2004) Syntheses and neuraminidase inhibitory activity of multisubstituted cyclopentane amide derivatives. J Med Chem 47:1919–1929PubMedGoogle Scholar
  90. 90.
    Cui Y, Jiao Z, Gong J, Yu Q, Zheng X, Quan J, Luo M, Yang Z (2009) Development of new stereodiverse diaminocyclitols as inhibitors of influenza virus neuraminidase. Org Lett 12:4–7Google Scholar
  91. 91.
    Wang GT, Chen Y, Wang S, Gentles R, Sowin T, Kati W, Muchmore S, Giranda V, Stewart K, Sham H et al (2001) Design, synthesis, and structural analysis of influenza neuraminidase inhibitors containing pyrrolidine cores. J Med Chem 44:1192–1201PubMedGoogle Scholar
  92. 92.
    Stoll V, Stewart KD, Maring CJ, Muchmore S, Giranda V, Gu Y-GY, Wang G, Chen Y, Sun M, Zhao C et al (2003) Influenza neuraminidase inhibitors: Structure-based design of a novel inhibitor series. Biochemistry 42:718–727PubMedGoogle Scholar
  93. 93.
    Wang GT, Wang S, Gentles R, Sowin T, Maring CJ, Kempf DJ, Kati WM, Stoll V, Stewart KD, Laver G (2005) Design, synthesis, and structural analysis of inhibitors of influenza neuraminidase containing a 2,3-disubstituted tetrahydrofuran-5-carboxylic acid core. Bioorg Med Chem Lett 15:125–128PubMedGoogle Scholar
  94. 94.
    Maring CJ, Stoll VS, Zhao C, Sun M, Krueger AC, Stewart KD, Madigan DL, Kati WM, Xu Y, Carrick RJ et al (2005) Structure-based characterization and optimization of novel hydrophobic binding interactions in a series of pyrrolidine influenza neuraminidase inhibitors. J Med Chem 48:3980–3990PubMedGoogle Scholar
  95. 95.
    Abed Y, Nehmé B, Baz M, Boivin G (2008) Activity of the neuraminidase inhibitor A-315675 against oseltamivir-resistant influenza neuraminidases of N1 and N2 subtypes. Antiviral Res 77:163–166PubMedGoogle Scholar
  96. 96.
    Zhang JXW, Liu A, Du G (2008) Design, synthesis and preliminary evaluation of new pyrrolidine derivatives as neuraminidase inhibitors. Med Chem 4:204–209Google Scholar
  97. 97.
    Krueger AC, Xu Y, Kati WM, Kempf DJ, Maring CJ, McDaniel KF, Molla A, Montgomery D, Kohlbrenner WE (2008) Synthesis of potent pyrrolidine influenza neuraminidase inhibitors. Bioorg Med Chem Lett 18:1692–1695PubMedGoogle Scholar
  98. 98.
    Kati WM, Montgomery D, Maring C, Stoll VS, Giranda V, Chen X, Laver WG, Kohlbrenner W, Norbeck DW (2001) Novel {alpha}- and {beta}-amino acid inhibitors of influenza virus neuraminidase. Antimicrob Agents Chemother 45:2563–2570PubMedGoogle Scholar
  99. 99.
    DeGoey D, Chen H-J, Flosi WJ, Grampovnik DJ, Yeoung CM, Klein LL, Kempf DJ (2002) Enantioselective synthesis of antiinfluenza compound A-315675. J Org Chem 67:5445–5453PubMedGoogle Scholar
  100. 100.
    Barnes DM, Bhagavatula L, DeMattei J, Gupta A, Hill DR, Manna S, McLaughlin MA, Nichols P, Premchandran R, Rasmussen MW et al (2003) A highly diastereoselective vinylogous Mannich condensation and 1,4-conjugate addition of (Z)-propenyl cuprate in the synthesis of an influenza neuraminidase inhibitor. Tetrahedron Asymmetry 14:3541–3551Google Scholar
  101. 101.
    Hanessian S, Bayrakdarian M, Luo X (2002) Total synthesis of A-315675:  a potent inhibitor of influenza neuraminidase. J Am Chem Soc 124:4716–4721PubMedGoogle Scholar
  102. 102.
    Ryu YB, Kim JH, Park S-J, Chang JS, Rho M-C, Bae K-H, Park KH, Lee WS (2010) Inhibition of neuraminidase activity by polyphenol compounds isolated from the roots of Glycyrrhiza uralensis. Bioorg Med Chem Lett 20:971–974PubMedGoogle Scholar
  103. 103.
    Jeong HJ, Ryu YB, Park S-J, Kim JH, Kwon H-J, Kim JH, Park KH, Rho M-C, Lee WS (2009) Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorg Med Chem 17:6816–6823PubMedGoogle Scholar
  104. 104.
    Ryu YB, Curtis-Long MJ, Lee JW, Ryu HW, Kim JY, Lee WS, Park KH (2009) Structural characteristics of flavanones and flavones from Cudrania tricuspidata for neuraminidase inhibition. Bioorg Med Chem Lett 19:4912–4915PubMedGoogle Scholar
  105. 105.
    Mercader AG, Pomilio AB (2010) QSAR study of flavonoids and biflavonoids as influenza H1N1 virus neuraminidase inhibitors. Eur J Med Chem 45:1724–1730PubMedGoogle Scholar
  106. 106.
    Hung H-C, Tseng C-P, Yang J-M, Ju Y-W, Tseng S-N, Chen Y-F, Chao Y-S, Hsieh H-P, Shih S-R, Hsu JTA (2009) Aurintricarboxylic acid inhibits influenza virus neuraminidase. Antiviral Res 81:123–131PubMedGoogle Scholar
  107. 107.
    Grienke U, Schmidtke M, Kirchmair J, Pfarr K, Wutzler P, Duìrrwald R, Wolber G, Liedl KR, Stuppner H, Rollinger JM (2009) Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from alpinia katsumadai. J Med Chem 53:778–786Google Scholar
  108. 108.
    An J, Lee DCW, Law AHY, Yang CLH, Poon LLM, Lau ASY, Jones SJM (2009) A novel small-molecule inhibitor of the avian influenza H5N1 virus determined through computational screening against the neuraminidase. J Med Chem 52:2667–2672PubMedGoogle Scholar
  109. 109.
    Shibazaki M, Tanaka K, Nagai K, Watanabe M, Fujita S, Suzuki K, Okada G, Yamamoto T (2004) YM-92447 (spinosulfate A), a neuraminidase inhibitor produced by an unidentified pycnidial fungus. J Antibiot 57:812–815PubMedGoogle Scholar
  110. 110.
    Collins P, Haire LF, Liu J, Russel RJ, Walker PA, Skehel JJ, Martin SR, Hay AJ, Gamblin SJ (2008) Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 453:1258–1262PubMedGoogle Scholar
  111. 111.
    Amaro RE, Minh DDL, Cheng LS, Lindstrom WM, Olson AJ, Lin J-H, Li WW, McCammon JA (2007) Remarkable loop flexibility in avian influenza n1 and its implications for antiviral drug design. J Am Chem Soc 129:7764–7765PubMedGoogle Scholar
  112. 112.
    Mitrasinovic P (2009) On the Structure-Based design of novel inhibitors of H5N1 influenza A virus neuraminidase (NA). Biophys Chem 140:35–38PubMedGoogle Scholar
  113. 113.
    Rungrotmongkol T, Frecer V, De-Eknamkul W, Hannongbua S, Miertus S (2009) Design of oseltamivir analogs inhibiting neuraminidase of avian influenza virus H5N1. Antiviral Res 82:51–58PubMedGoogle Scholar
  114. 114.
    Park JW, Jo WH (2009) Computational design of novel, high-affinity neuraminidase inhibitors for H5N1 avian influenza virus. Eur J Med Chem 45:536–541PubMedGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of SussexBrightonUK

Personalised recommendations