Advertisement

Influenza Virus Sialidase and Structure-Based Drug Design

  • Jeffrey C. Dyason
  • Mark von Itzstein
Chapter
Part of the Milestones in Drug Therapy book series (MDT)

Abstract

Structure-based drug design was critical in the development of the currently available drugs for treating influenza virus infection. Recent reports show there are in fact two different groups of influenza virus A sialidases, with the main structural difference between the two groups being a flexible loop region in the vicinity of the active site. This report looks at how the crystal structures of the new group 1 sialidases have been used to design new influenza virus A sialidase inhibitors which would target the flexible loop region. Although there have been several studies using molecular dynamics and docking techniques, to date there has been only one report of inhibitors that have been designed, synthesised and proved to target the flexible loop region.

Keywords

Influenza Virus Oseltamivir Carboxylate H1N1 Influenza Pandemic Glu119 Side Chain Flexible Loop Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Klenk HD (2011) Influenza virus virology. In: von Itzstein M (ed) Influenza virus sialidase: a drug discovery target. Springer, HeidelbergGoogle Scholar
  2. 2.
    Colman PM, Varghese JN, Laver WG (1983) Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303:41–44PubMedCrossRefGoogle Scholar
  3. 3.
    Varghese JN, Laver WG, Colman PM (1983) Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 303:35–40PubMedCrossRefGoogle Scholar
  4. 4.
    Varghese JN, McKimm-Breschkin JL, Caldwell JB, Kortt AA, Colman PM (1992) The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins 14:327–332PubMedCrossRefGoogle Scholar
  5. 5.
    Bossart-Whitaker P, Carson M, Babu YS, Smith CD, Laver WG, Air GM (1993) Three-dimensional structure of influenza A N9 neuraminidase and its complex with the inhibitor 2-deoxy 2,3-dehydro-N-acetyl neuraminic acid. J Mol Biol 232:1069–1083PubMedCrossRefGoogle Scholar
  6. 6.
    Burmeister WP, Henrissat B, Bosso C, Cusack S, Ruigrok RW (1993) Influenza B virus neuraminidase can synthesize its own inhibitor. Structure 1:19–26PubMedCrossRefGoogle Scholar
  7. 7.
    Colman PM (2009) New antivirals and drug resistance. Annu Rev Biochem 78:95–118PubMedCrossRefGoogle Scholar
  8. 8.
    Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443:45–49PubMedCrossRefGoogle Scholar
  9. 9.
    Smith FI, Palese P (1989) Variation in the influenza virus genes: epidemiological, pathogenic and evolutionary consequences. In: Krug RM (ed) The influenza virus. Plenum, New York, pp 319–350Google Scholar
  10. 10.
    Colman PM (1994) Influenza virus neuraminidase: structure, antibodies, and inhibitors. Protein Sci 3:1687–1696PubMedCrossRefGoogle Scholar
  11. 11.
    Laver G, Garman E (2002) Pandemic influenza: its origin and control. Microbes Infect 4:1309–1316PubMedCrossRefGoogle Scholar
  12. 12.
    Colman PM (1994) Influenza virus neuraminidase: structure, antibodies, and inhibitors. Protein Sci 3:1687–1696PubMedCrossRefGoogle Scholar
  13. 13.
    Laver G, Garman E (2002) Pandemic influenza: its origin and control. Microbes Infect 4:1309–1316PubMedCrossRefGoogle Scholar
  14. 14.
    Chan J, Bennet AJ (2011) Enzymology of influenza virus sialidase. In: von Itzstein M (ed) Influenza virus sialidase: a drug discovery target. Springer, HeidelbergGoogle Scholar
  15. 15.
    Thomson R, von Itzstein M (2011) The development of carbohydrate-based influenza virus sialidase inhibitors. In: von Itzstein M (ed) Influenza virus sialidase: a drug discovery target. Springer, HeidelbergGoogle Scholar
  16. 16.
    Streicher H, Stanley M (2011) The development of non-carbohydrate-based influenza virus sialidase inhibitors. In: von Itzstein M (ed) Influenza virus sialidase: a drug discovery target. Springer, HeidelbergGoogle Scholar
  17. 17.
    Xu XJ, Zhu XY, Dwek RA, Stevens J, Wilson IA (2008) Structural characterization of the 1918 influenza virus H1N1 neuraminidase. J Virol 82:10493–10501PubMedCrossRefGoogle Scholar
  18. 18.
    Li Q, Qi J, Zhang W, Vavricka CJ, Shi Y, Wei J, Feng E, Shen J, Chen J, Liu D et al (2010) The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nat Struct Mol Biol 17:1266–1268PubMedCrossRefGoogle Scholar
  19. 19.
    Rudrawar S, Dyason JC, Rameix-Welti MA, Rose FJ, Kerry PS, Russell RJ, van der Werf S, Thomson RJ, Naffakh N, von Itzstein M (2010) Novel sialic acid derivatives lock open the 150-loop of an influenza A virus group-1 sialidase. Nat Commun 1:113PubMedCrossRefGoogle Scholar
  20. 20.
    von Itzstein M (2007) The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov 6:967–974CrossRefGoogle Scholar
  21. 21.
    von Itzstein M, Thomson R (2009) Anti-influenza drugs: the development of sialidase inhibitors. Handb Exp Pharmacol 189:111–154CrossRefGoogle Scholar
  22. 22.
    Gubareva LV, Webster RG, Hayden FG (2001) Comparison of the activities of zanamivir, oseltamivir, and RWJ-270201 against clinical isolates of influenza virus and neuraminidase inhibitor-resistant variants. Antimicrob Agents Chemother 45:3403–3408PubMedCrossRefGoogle Scholar
  23. 23.
    Collins PJ, Haire LF, Lin YP, Liu JF, Russell RJ, Walker PA, Skehel JJ, Martin SR, Hay AJ, Gamblin SJ (2008) Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 453:1258–U1261PubMedCrossRefGoogle Scholar
  24. 24.
    Cheng LS, Amaro RE, Xu D, Li WW, Arzberger PW, McCammon JA (2008) Ensemble-based virtual screening reveals potential novel antiviral compounds for avian influenza neuraminidase. J Med Chem 51:3878–3894PubMedCrossRefGoogle Scholar
  25. 25.
    Park JW, Jo WH (2010) Computational design of novel, high-affinity neuraminidase inhibitors for H5N1 avian influenza virus. Eur J Med Chem 45:536–541PubMedCrossRefGoogle Scholar
  26. 26.
    Wang YT, Chan CH, Su ZY, Chen CL (2010) Homology modeling, docking, and molecular dynamics reveal HR1039 as a potent inhibitor of 2009 A(H1N1) influenza neuraminidase. Biophys Chem 147:74–80PubMedCrossRefGoogle Scholar
  27. 27.
    Durrant JD, McCammon JA (2010) Potential drug-like inhibitors of Group 1 influenza neuraminidase identified through computer-aided drug design. Comput Biol Chem 34:97–105PubMedCrossRefGoogle Scholar
  28. 28.
    Wen WH, Wang SY, Tsai KC, Cheng YSE, Yang AS, Fang JM, Wong CH (2010) Analogs of zanamivir with modified C4-substituents as the inhibitors against the group-1 neuraminidases of influenza viruses. Bioorg Med Chem 18:4074–4084PubMedCrossRefGoogle Scholar
  29. 29.
    Sun JY, Cai SX, Yan N, Mei H (2010) Docking and 3D-QSAR studies of influenza neuraminidase inhibitors using three-dimensional holographic vector of atomic interaction field analysis. Eur J Med Chem 45:1008–1014PubMedCrossRefGoogle Scholar
  30. 30.
    Chen CY, Huang HJ, Tsai FJ, Chen CYC (2010) Drug design for Influenza A virus subtype H1N1. J Taiwan Inst Chem Eng 41:8–15CrossRefGoogle Scholar
  31. 31.
    Li Y, Zhou BC, Wang RX (2009) Rational design of Tamiflu derivatives targeting at the open conformation of neuraminidase subtype 1. J Mol Graph Model 28:203–219PubMedCrossRefGoogle Scholar
  32. 32.
    D'Souza C, Kanyalkar M, Joshi M, Coutinho E, Srivastava S (2009) Search for novel neuraminidase inhibitors: design, synthesis and interaction of oseltamivir derivatives with model membrane using docking, NMR and DSC methods. Biochim Biophys Acta-Biomembr 1788:1740–1751CrossRefGoogle Scholar
  33. 33.
    An JH, Lee DCW, Law AHY, Yang CLH, Poon LLM, Lau ASY, Jones SJM (2009) A novel small-molecule inhibitor of the avian influenza H5N1 virus determined through computational screening against the neuraminidase. J Med Chem 52:2667–2672PubMedCrossRefGoogle Scholar
  34. 34.
    Rungrotmongkol T, Frecer V, De-Eknamkul W, Hannongbua S, Miertus S (2009) Design of oseltamivir analogs inhibiting neuraminidase of avian influenza virus H5N1. Antiviral Res 82:51–58PubMedCrossRefGoogle Scholar
  35. 35.
    Mitrasinovic PM (2009) On the structure-based design of novel inhibitors of H5N1 influenza A virus neuraminidase (NA). Biophys Chem 140:35–38PubMedCrossRefGoogle Scholar
  36. 36.
    Garcia-Sosa AT, Sild S, Maran U (2008) Design of multi-binding-site inhibitors, ligand efficiency, and consensus screening of avian influenza H5N1 wild-type neuraminidase and of the oseltamivir-resistant H274Y variant. J Chem Inf Model 48:2074–2080PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Institute for GlycomicsGriffith UniversitySouthportAustralia

Personalised recommendations