Investigating the Interaction Between Influenza and Sialic Acid: Making and Breaking the Link

  • John M. Nicholls
  • Jimmy Lai
  • Jean-Michel Garcia
Part of the Milestones in Drug Therapy book series (MDT)


Since the early 1940s sialic acid (Sia) has been regarded as the primary receptor for influenza virus. This Sia is usually bound to an adjacent galactose (Gal) in an α2-3 or α2-6 configuration. This led to a concept about an interspecies barrier as avian viruses preferentially bind to Sia α2-3 linked to Gal, whereas human viruses have a preference for the Sia α2-6 linked to Gal and that transmission from one species to another would preferentially occur only in a host species in which both types of Sia were present. The viral haemagglutinin binds to Sia to facilitate cellular entry. To release progeny viral particles the second main component of the influenza viral envelope – neuraminidase, cleaves Sia. The viral-receptor interaction was initially investigated using agglutination of red blood cells and later using lectin histochemistry. Recent techniques investigating the HA-Sia/NA-Sia link have employed the use of glycan arrays and virus-like pseudoparticles with STD-NMR.


Influenza Virus Sialic Acid Glycan Chain Lectin Histochemistry Avian Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research supported by funding from Wellcome Trust, UK (082098, 081184/Z/06/Z), Research Grants Committee (GRF 4774109), HKSAR and Research Fund for Control of Infectious Disease (08070842), Government of HKSAR, NIAID. Drs Stuart Haslam and Rositsa Karamanska, Imperial College, United Kingdom are thanked for valuable help on glycan structures and glycobiology experience.


  1. 1.
    Schauer R (2000) Achievements and challenges of sialic acid research. Glycoconj J 17:485–499PubMedCrossRefGoogle Scholar
  2. 2.
    Hirst GK (1942) Adsorption of influenza hemagglutinins and virus by red blood cells. J Exp Med 76:195–209PubMedCrossRefGoogle Scholar
  3. 3.
    Archetti I, Donald HB, Isaacs A, Valentine RC (1955) The effects of metaperiodate and heated influenza virus on influenza virus growth. J Gen Microbiol 13:330–337PubMedGoogle Scholar
  4. 4.
    Miller GL, Stanley WM (1944) Quantitative aspects of the red blood cell agglutination test for influenza virus. J Exp Med 79:185–195PubMedCrossRefGoogle Scholar
  5. 5.
    Hirst GK (1948) The nature of the virus receptors of red cells; the effect of partial heat inactivation of influenza virus on the destruction of red cell receptors and the use of inactivated virus in the measurement of serum inhibitor. J Exp Med 87:315–328PubMedCrossRefGoogle Scholar
  6. 6.
    Hirst GK (1948) The nature of the virus receptors of red cells; evidence on the chemical nature of the virus receptors of red cells and of the existence of a closely analogous substance in normal serum. J Exp Med 87:301–314PubMedCrossRefGoogle Scholar
  7. 7.
    Graham ER, Gottschalk A (1960) Studies on mucoproteins. I. The structure of the prosthetic group of ovine submaxillary gland mucoprotein. Biochim Biophys Acta 38:513–524PubMedCrossRefGoogle Scholar
  8. 8.
    Gottschalk A, Fezekas De St Groth S (1960) On the relationship between the indicator profile and prosthetic group of mucoproteins inhibitory for influenza virus haemagglutinin. J Gen Microbiol 22:690–697PubMedGoogle Scholar
  9. 9.
    Hoyle L (1968) Virol Monogr 4:1–375Google Scholar
  10. 10.
    Schauer R (1973) Chemistry and biology of the acylneuraminic acids. Angew Chem Int Ed Engl 12:127–138PubMedCrossRefGoogle Scholar
  11. 11.
    Paulson JC, Sadler JE, Hill RL (1979) Restoration of specific myxovirus receptors to asialoerythrocytes by incorporation of sialic acid with pure sialyltransferases. J Biol Chem 254:2120–2124PubMedGoogle Scholar
  12. 12.
    Chu CM (1948) Inactivation of haemagglutinin and infectivity of influenza and Newcastle disease viruses by heat and by formalin. J Hyg (Lond) 46:247–251CrossRefGoogle Scholar
  13. 13.
    Jameson P, Levine AS (1965) Substrate specificity of neurotropic influenza virus neuraminidases. J Bacteriol 90:563–564PubMedGoogle Scholar
  14. 14.
    Noll H, Aoyagi T, Orlando J (1962) The structural relationship of sialidase to the influenza virus surface. Virology 18:154–157PubMedCrossRefGoogle Scholar
  15. 15.
    Horsfall FL (1941) Recent studies in influenza. Am J Public Health Nations Health 31:1275–1280PubMedCrossRefGoogle Scholar
  16. 16.
    Harduin-Lepers A, Mollicone R, Delannoy P, Oriol R (2005) The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology 15:805–817PubMedCrossRefGoogle Scholar
  17. 17.
    Paulson JC, Rademacher C (2009) Glycan terminator. Nat Struct Mol Biol 16:1121–1122PubMedCrossRefGoogle Scholar
  18. 18.
    Lise M, Belluco C, Perera SP, Patel R, Thomas P, Ganguly A (2000) Clinical correlations of alpha2,6-sialyltransferase expression in colorectal cancer patients. Hybridoma 19:281–286PubMedCrossRefGoogle Scholar
  19. 19.
    Yasukawa Z, Sato C, Kitajima K (2005) Inflammation-dependent changes in alpha2,3-, alpha2,6-, and alpha2,8-sialic acid glycotopes on serum glycoproteins in mice. Glycobiology 15:827–837PubMedCrossRefGoogle Scholar
  20. 20.
    Delmotte P, Degroote S, Merten MD, Van Seuningen I, Bernigaud A, Figarella C, Roussel P, Perini JM (2001) Influence of TNFalpha on the sialylation of mucins produced by a transformed cell line MM-39 derived from human tracheal gland cells. Glycoconj J 18:487–497PubMedCrossRefGoogle Scholar
  21. 21.
    Ishibashi Y, Inouye Y, Okano T, Taniguchi A (2005) Regulation of sialyl-Lewis x epitope expression by TNF-alpha and EGF in an airway carcinoma cell line. Glycoconj J 22:53–62PubMedCrossRefGoogle Scholar
  22. 22.
    Rogers GN, Paulson JC (1983) Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373PubMedCrossRefGoogle Scholar
  23. 23.
    Gambaryan A, Yamnikova S, Lvov D, Tuzikov A, Chinarev A, Pazynina G, Webster R, Matrosovich M, Bovin N (2005) Receptor specificity of influenza viruses from birds and mammals: new data on involvement of the inner fragments of the carbohydrate chain. Virology 334:276–283PubMedCrossRefGoogle Scholar
  24. 24.
    Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312:404–410PubMedCrossRefGoogle Scholar
  25. 25.
    Gambaryan AS, Tuzikov AB, Pazynina GV, Webster RG, Matrosovich MN, Bovin NV (2004) H5N1 chicken influenza viruses display a high binding affinity for Neu5Acalpha2-3Galbeta1-4(6-HSO3)GlcNAc-containing receptors. Virology 326:310–316PubMedCrossRefGoogle Scholar
  26. 26.
    Lamblin G, Degroote S, Perini JM, Delmotte P, Scharfman A, Davril M, Lo-Guidice JM, Houdret N, Dumur V, Klein A et al (2001) Human airway mucin glycosylation: a combinatory of carbohydrate determinants which vary in cystic fibrosis. Glycoconj J 18:661–684PubMedCrossRefGoogle Scholar
  27. 27.
    Russell RJ, Stevens DJ, Haire LF, Gamblin SJ, Skehel JJ (2006) Avian and human receptor binding by hemagglutinins of influenza A viruses. Glycoconj J 23:85–92PubMedCrossRefGoogle Scholar
  28. 28.
    Kumari K, Gulati S, Smith DF, Gulati U, Cummings RD, Air GM (2007) Receptor binding specificity of recent human H3N2 influenza viruses. Virol J 4:42PubMedCrossRefGoogle Scholar
  29. 29.
    Vigerust DJ, Shepherd VL (2007) Virus glycosylation: role in virulence and immune interactions. Trends Microbiol 15:211–218PubMedCrossRefGoogle Scholar
  30. 30.
    Klenk HD, Wagner R, Heuer D, Wolff T (2002) Importance of hemagglutinin glycosylation for the biological functions of influenza virus. Virus Res 82:73–75PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang M, Gaschen B, Blay W, Foley B, Haigwood N, Kuiken C, Korber B (2004) Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. Glycobiology 14:1229–1246PubMedCrossRefGoogle Scholar
  32. 32.
    Sharon N (2007) Lectins: carbohydrate-specific reagents and biological recognition molecules. J Biol Chem 282:2753–2764PubMedCrossRefGoogle Scholar
  33. 33.
    Loris R (2002) Principles of structures of animal and plant lectins. Biochim Biophys Acta 1572:198–208PubMedCrossRefGoogle Scholar
  34. 34.
    Boyd WC, Waszczenko-Zacharczenko E, Goldwasser SM (1961) List of plants tested for hemagglutinating activity. Transfusion 1:374–382PubMedCrossRefGoogle Scholar
  35. 35.
    Kawaguchi T, Matsumoto I, Osawa T (1974) Studies on hemagglutinins from Maackia amurensis seeds. J Biol Chem 249:2786–2792PubMedGoogle Scholar
  36. 36.
    Wang WC, Cummings RD (1987) An assay for leukoagglutinating lectins using suspension cultured mouse lymphoma cells (BW5147) stained with neutral red. Anal Biochem 161:80–84PubMedCrossRefGoogle Scholar
  37. 37.
    Wang WC, Clark GF, Smith DF, Cummings RD (1988) Separation of oligosaccharides containing terminal alpha-linked galactose residues by affinity chromatography on Griffonia simplicifolia I bound to concanavalin A-sepharose. Anal Biochem 175:390–396PubMedCrossRefGoogle Scholar
  38. 38.
    Shibuya N, Goldstein IJ, Broekaert WF, Nsimba-Lubaki M, Peeters B, Peumans WJ (1987) The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2–6)Gal/GalNAc sequence. J Biol Chem 262:1596–1601PubMedGoogle Scholar
  39. 39.
    Rogers GN, Paulson JC, Daniels RS, Skehel JJ, Wilson IA, Wiley DC (1983) Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature 304:76–78PubMedCrossRefGoogle Scholar
  40. 40.
    Naeve CW, Hinshaw VS, Webster RG (1984) Mutations in the hemagglutinin receptor-binding site can change the biological properties of an influenza virus. J Virol 51:567–569PubMedGoogle Scholar
  41. 41.
    Connor RJ, Kawaoka Y, Webster RG, Paulson JC (1994) Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205:17–23PubMedCrossRefGoogle Scholar
  42. 42.
    Vines A, Wells K, Matrosovich M, Castrucci MR, Ito T, Kawaoka Y (1998) The role of influenza A virus hemagglutinin residues 226 and 228 in receptor specificity and host range restriction. J Virol 72:7626–7631PubMedGoogle Scholar
  43. 43.
    Nobusawa E, Aoyama T, Kato H, Suzuki Y, Tateno Y, Nakajima K (1991) Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology 182:475–485PubMedCrossRefGoogle Scholar
  44. 44.
    Gulati S, Smith DF, Air GM (2009) Deletions of neuraminidase and resistance to oseltamivir may be a consequence of restricted receptor specificity in recent H3N2 influenza viruses. Virol J 6:22PubMedCrossRefGoogle Scholar
  45. 45.
    Rabi J (1938) A new method of measuring nuclear magnetic moment. Phys Rev 53:318CrossRefGoogle Scholar
  46. 46.
    Meyer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed Engl 38:1784–1788CrossRefGoogle Scholar
  47. 47.
    Meyer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123:6108–6117PubMedCrossRefGoogle Scholar
  48. 48.
    Benie A, Moser R, Bauml E, Blaas D, Peters T (2003) Virus-ligand interactions: identification and characterization of ligand binding by NMR spectroscopy. J Am Chem Soc 125:14–15PubMedCrossRefGoogle Scholar
  49. 49.
    Rademacher C, Krishna NR, Palcic M, Parra F, Peters T (2008) NMR experiments reveal the molecular basis of receptor recognition by a clicivirus. J Am Chem Soc 130:3669–3675PubMedCrossRefGoogle Scholar
  50. 50.
    Haselhorst T, Garcia JM, Islam T, Lai JC, Rose FJ, Nicholls JM, Peiris JS, von Itzstein M (2008) Avian influenza H5-containing virus-like particles (VLPs): host-cell receptor specificity by STD NMR spectroscopy. Angew Chem Int Ed Engl 47:1910–1912PubMedCrossRefGoogle Scholar
  51. 51.
    Nefkens I, Garcia JM, Ling CS, Lagarde N, Nicholls J, Tang DJ, Peiris M, Buchy P, Altmeyer R (2007) Hemagglutinin pseudotyped lentiviral particles: characterization of a new method for avian H5N1 influenza sero-diagnosis. J Clin Virol 39:27–33PubMedCrossRefGoogle Scholar
  52. 52.
    Garcia JM, Lagarde N, Ma ES, de Jong MD, Peiris JS (2010) Optimization and evaluation of an influenza A (H5) pseudotyped lentiviral particle-based serological assay. J Clin Virol 47:29–33PubMedCrossRefGoogle Scholar
  53. 53.
    Schultsz C, Nguyen VD, le Hai T, Do QH, Peiris JS, Lim W, Garcia JM, Nguyen DT, Nguyen TH, Huynh HT et al (2009) Prevalence of antibodies against avian influenza A (H5N1) virus among Cullers and poultry workers in Ho Chi Minh City, 2005. PLoS One 4:e7948PubMedCrossRefGoogle Scholar
  54. 54.
    Garcia JM, Pepin S, Lagarde N, Ma ES, Vogel FR, Chan KH, Chiu SS, Peiris JS (2009) Heterosubtype neutralizing responses to influenza A (H5N1) viruses are mediated by antibodies to virus haemagglutinin. PLoS One 4:e7918PubMedCrossRefGoogle Scholar
  55. 55.
    Lai JC, Chan WW, Kien F, Nicholls JM, Peiris JS, Garcia JM (2010) Formation of virus-like particles from human cell lines exclusively expressing Influenza neuraminidase. J Gen Virol 91:2322–2330PubMedCrossRefGoogle Scholar
  56. 56.
    Chan RW, Chan MC, Wong AC, Karamanska R, Dell A, Haslam SM, Sihoe AD, Chui WH, Triana-Baltzer G, Li Q et al (2009) DAS181 inhibits H5N1 influenza virus infection of human lung tissues. Antimicrob Agents Chemother 53:3935–3941PubMedCrossRefGoogle Scholar
  57. 57.
    Yamada S, Suzuki Y, Suzuki T, Le MQ, Nidom CA, Sakai-Tagawa Y, Muramoto Y, Ito M, Kiso M, Horimoto T et al (2006) Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444:378–382PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • John M. Nicholls
    • 1
  • Jimmy Lai
    • 2
  • Jean-Michel Garcia
    • 2
  1. 1.Department of PathologyThe University of Hong KongPok Fu LamHong Kong
  2. 2.HKU-Pasteur Research CentreThe University of Hong KongPok Fu LamHong Kong

Personalised recommendations