Influenza Virology

Part of the Milestones in Drug Therapy book series (MDT)


Influenza virus, comprising types A, B, and C, belong to the Orthomyxoviridae family. Influenza A viruses are important human and animal pathogens. Their natural hosts are aquatic birds from which they are occasionally transmitted to other species. In man, they cause outbreaks of respiratory disease that occur as annual epidemics and less frequent pandemics. Virus particles are composed of a lipid envelope with glycoprotein spikes and a nucleoprotein core containing the negative-stranded RNA genome and the RNA-dependent RNA polymerase. Reassortment of the segmented genome and a high mutation rate account for the unusual variability of influenza A viruses. The 8 RNA segments encode 11 proteins. The haemagglutinin (HA) is responsible for virus entry into the host cell by binding to sialic acid-containing receptors and by inducing membrane fusion, the viral polymerase mediates RNA replication and transcription in the nucleus, and the neuraminidase promotes release of progeny virions that are formed by budding from the cell surface. The non-structural NS1 protein has several functions, including that of an interferon antagonist. Host specificity and pathogenicity result from the interaction of numerous host factors with all viral proteins among which, however, the polymerase, the HA, and NS1 play particularly prominent roles.


Influenza Virus Sialic Acid H5N1 Virus Avian Influenza Virus Highly Pathogenic Avian Influenza 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I gratefully acknowledge the editorial help of Sabine Fischbach.


  1. 1.
    Shope RE (1931) Swine influenza. 1. Experimental transmission and pathology. J Exp Med 54:349–360PubMedGoogle Scholar
  2. 2.
    Smith W, Andrewes CH, Laidlaw PP (1933) A virus obtained from influenza patients. Lancet 6668Google Scholar
  3. 3.
    Centanni E (1902) Die Vogelpest. Beitrag zu dem durch Kerzen filtrierbaren Virus (Fowl plague. Report on the candle filterable virus). Centralblatt für Bakteriologie. Parasitenkunde und Infektionskrankheiten I Abteilung: medizinische-hygienische Bakteriologie und tierische Parasitenkunde 31:145–152Google Scholar
  4. 4.
    Lode A, Gruber F (1901) Bakteriologische Studien über die Aetiologie einer epidemischen Erkrankung der Hühner in Tirol. Centralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten I Abteilung: medizinische-hygienische Bakteriologie und tierische Parasitenkunde 30:593–604Google Scholar
  5. 5.
    Schaefer W (1955) Vergleichende sero-immunologische Untersuchungen über die Viren der Influenza und klassischen Geflügelpest (Comparative sero-immunological investigations on the viruses of influenza and classical fowl plague). Z Naturforsch 10b:81–91Google Scholar
  6. 6.
    Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179PubMedGoogle Scholar
  7. 7.
    Hirst GK (1941) The agglutination of red cells by allantoic fluid of chick embryos infected with influenza virus. Science 94:22–23PubMedGoogle Scholar
  8. 8.
    McClelland L, Hare R (1941) The adsorption of influenza virus by red cells and a new in vitro method of measuring antibodies for influenza virus. Can J Public Health 32:530–538Google Scholar
  9. 9.
    Burnet FM, Stone JD (1947) The receptor destroying enzyme of V. cholerae. Aust J Exp Biol Med Sci 25:227–233PubMedGoogle Scholar
  10. 10.
    Gottschalk A, Lind PE (1949) Product of interaction between influenza virus enzyme and ovomucin. Nature 164:232PubMedGoogle Scholar
  11. 11.
    Klenk E, Faillard H, Lempfrid H (1955) Über die enzymatische Wirkung von Influenza Virus. Z Physiol Chem 301:235–246Google Scholar
  12. 12.
    Shaw ML, Palese P (2008) Orthomyxoviruses: molecular biology. In: Mahy BWJ, Van Regenmortel M (eds) Encyclopedia of virology, vol 3. Elsevier, Amsterdam, pp 483–489Google Scholar
  13. 13.
    Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus AD, Fouchier RA (2006) Global patterns of influenza a virus in wild birds. Science 312:384–388PubMedGoogle Scholar
  14. 14.
    Alexander DJ, Brown IH (2009) History of highly pathogenic avian influenza. Rev Sci Tech 28:19–38PubMedGoogle Scholar
  15. 15.
    Campitelli L, Mogavero E, De Marco MA, Delogu M, Puzelli S, Frezza F, Facchini M, Chiapponi C, Foni E, Cordioli P et al (2004) Interspecies transmission of an H7N3 influenza virus from wild birds to intensively reared domestic poultry in Italy. Virology 323:24–36PubMedGoogle Scholar
  16. 16.
    Roehm C, Horimoto T, Kawaoka Y, Suss J, Webster RG (1995) Do hemagglutinin genes of highly pathogenic avian influenza viruses constitute unique phylogenetic lineages? Virology 209:664–670Google Scholar
  17. 17.
    Chen H, Smith GJ, Li KS, Wang J, Fan XH, Rayner JM, Vijaykrishna D, Zhang JX, Zhang LJ, Guo CT et al (2006) Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. Proc Natl Acad Sci USA 103:2845–2850PubMedGoogle Scholar
  18. 18.
    Matrosovich M, Zhou N, Kawaoka Y, Webster R (1999) The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 73:1146–1155PubMedGoogle Scholar
  19. 19.
    Matrosovich MN, Krauss S, Webster RG (2001) H9N2 Influenza A Viruses from Poultry in Asia Have Human Virus-like Receptor Specificity. Virology 281:156–162PubMedGoogle Scholar
  20. 20.
    Horimoto T, Kawaoka Y (2005) Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol 3:591–600PubMedGoogle Scholar
  21. 21.
    Gabriel G, Dauber B, Wolff T, Planz O, Klenk HD, Stech J (2005) The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci USA 102:18590–18595PubMedGoogle Scholar
  22. 22.
    Ludwig S, Stitz L, Planz O, Van H, Fitch WM, Scholtissek C (1995) European swine virus as a possible source for the next influenza pandemic? Virology 212:555–561PubMedGoogle Scholar
  23. 23.
    Scholtissek C (1990) Pigs as “mixing vessels” for the creation of new pandemic influenza A viruses. Med Principles Pract 2:65–71Google Scholar
  24. 24.
    Taubenberger JK, Morens DM (2009) Pandemic influenza–including a risk assessment of H5N1. Rev Sci Tech 28:187–202PubMedGoogle Scholar
  25. 25.
    Taubenberger JK, Reid AH, Krafft AE, Bijwaard KE, Fanning TG (1997) Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 275:1793–1796PubMedGoogle Scholar
  26. 26.
    Reid AH, Fanning TG, Hultin JV, Taubenberger JK (1999) Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc Natl Acad Sci USA 96:1651–1656PubMedGoogle Scholar
  27. 27.
    Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solorzano A, Swayne DE, Cox NJ, Katz JM, Taubenberger JK, Palese P, Garcia-Sastre A (2005) Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310:77–80PubMedGoogle Scholar
  28. 28.
    Kobasa D, Takada A, Shinya K, Hatta M, Halfmann P, Theriault S, Suzuki H, Nishimura H, Mitamura K, Sugaya N et al (2004) Enhanced virulence of influenza A viruses with the hemagglutinin of the 1918 pandemic virus. Nature 431:703–707PubMedGoogle Scholar
  29. 29.
    Tumpey TM, Garcia-Sastre A, Mikulasova A, Taubenberger JK, Swayne DE, Palese P, Basler CF (2002) Existing antivirals are effective against influenza viruses with genes from the 1918 pandemic virus. Proc Natl Acad Sci USA 99:13849–13854PubMedGoogle Scholar
  30. 30.
    Tumpey TM, Garcia-Sastre A, Taubenberger JK, Palese P, Swayne DE, Basler CF (2004) Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proc Natl Acad Sci USA 101:3166–3171PubMedGoogle Scholar
  31. 31.
    Van Hoeven N, Pappas C, Belser JA, Maines TR, Zeng H, Garcia-Sastre A, Sasisekharan R, Katz JM, Tumpey TM (2009) Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. Proc Natl Acad Sci USA 106:3366–3371PubMedGoogle Scholar
  32. 32.
    Watanabe T, Watanabe S, Shinya K, Kim JH, Hatta M, Kawaoka Y (2009) Viral RNA polymerase complex promotes optimal growth of 1918 virus in the lower respiratory tract of ferrets. Proc Natl Acad Sci USA 106:588–592PubMedGoogle Scholar
  33. 33.
    Geiss GK, Salvatore M, Tumpey TM, Carter VS, Wang X, Basler CF, Taubenberger JK, Bumgarner RE, Palese P, Katze MG, Garcia-Sastre A (2002) Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc Natl Acad Sci USA 99:10736–10741PubMedGoogle Scholar
  34. 34.
    McAuley JL, Hornung F, Boyd KL, Smith AM, McKeon R, Bennink J, Yewdell JW, McCullers JA (2007) Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe 2:240–249PubMedGoogle Scholar
  35. 35.
    Kash JC, Tumpey TM, Proll SC, Carter V, Perwitasari O, Thomas MJ, Basler CF, Palese P, Taubenberger JK, Garcia-Sastre A et al (2006) Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443:578–581PubMedGoogle Scholar
  36. 36.
    Kobasa D, Jones SM, Shinya K, Kash JC, Copps J, Ebihara H, Hatta Y, Kim JH, Halfmann P, Hatta M et al (2007) Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445:319–323PubMedGoogle Scholar
  37. 37.
    Kawaoka Y, Krauss S, Webster RG (1989) Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol 63:4603–4608PubMedGoogle Scholar
  38. 38.
    Scholtissek C, Rohde W, Von Hoyningen V, Rott R (1978) On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 87:13–20PubMedGoogle Scholar
  39. 39.
    Nakajima K, Desselberger U, Palese P (1978) Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950. Nature 274:334–339PubMedGoogle Scholar
  40. 40.
    Scholtissek C, von Hoyningen V, Rott R (1978) Genetic relatedness between the new 1977 epidemic strains (H1N1) of influenza and human influenza strains isolated between 1947 and 1957 (H1N1). Virology 89:613–617PubMedGoogle Scholar
  41. 41.
    Holmes EC, Ghedin E, Miller N, Taylor J, Bao Y, St George K, Grenfell BT, Salzberg SL, Fraser CM, Lipman DJ, Taubenberger JK (2005) Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol 3:e300PubMedGoogle Scholar
  42. 42.
    Kilbourne ED (1977) Influenza pandemics in perspective. JAMA 237:1225–1228PubMedGoogle Scholar
  43. 43.
    Pyle GF (1986) The diffusion of influenza: patterns and paradigms. Rowan & Littlefield, New JerseyGoogle Scholar
  44. 44.
    Noble GR (1982) Epidemiological and clinical aspects of influenza. In: Beare AS (ed) Basic and applied influenza research. CRC Press, Boca Raton, FL, pp 11–50Google Scholar
  45. 45.
    Kilbourne ED, Smith C, Brett I, Pokorny BA, Johansson B, Cox N (2002) The total influenza vaccine failure of 1947 revisited: major intrasubtypic antigenic change can explain failure of vaccine in a post-World War II epidemic. Proc Natl Acad Sci USA 99:10748–10752PubMedGoogle Scholar
  46. 46.
    Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu X, Skepner E, Deyde V et al (2009) Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325:197–201PubMedGoogle Scholar
  47. 47.
    Claas EC, Osterhaus AD, van Beek R, De Jong JC, Rimmelzwaan GF, Senne DA, Krauss S, Shortridge KF, Webster RG (1998) Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351:472–477PubMedGoogle Scholar
  48. 48.
    Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, Perdue M, Swayne D, Bender C, Huang J et al (1998) Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279:393–396PubMedGoogle Scholar
  49. 49.
    Xu X, Subbarao CNJ, Guo Y (1999) Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 261:15–19PubMedGoogle Scholar
  50. 50.
    Cauthen AN, Swayne DE, Schultz-Cherry S, Perdue ML, Suarez DL (2000) Continued circulation in China of highly pathogenic avian influenza viruses encoding the hemagglutinin gene associated with the 1997 H5N1 outbreak in poultry and humans. J Virol 74:6592–6599PubMedGoogle Scholar
  51. 51.
    Guan Y, Peiris JS, Lipatov AS, Ellis TM, Dyrting KC, Krauss S, Zhang LJ, Webster RG, Shortridge KF (2002) Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci USA 99:8950–8955PubMedGoogle Scholar
  52. 52.
    World Health Organization (2003) WHO: disease alert: 10 December 2003. Influenza A(H9N2) in Hong Kong Special Administrative Region of ChinaGoogle Scholar
  53. 53.
    Li KS, Guan Y, Wang J, Smith GJ, Xu KM, Duan L, Rahardjo AP, Puthavathana P, Buranathai C, Nguyen TD et al (2004) Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430:209–213PubMedGoogle Scholar
  54. 54.
    Liu J, Xiao H, Lei F, Zhu Q, Qin K, Zhang XW, Zhang XL, Zhao D, Wang G, Feng Y et al (2005) Highly pathogenic H5N1 influenza virus infection in migratory birds. Science 309:1206PubMedGoogle Scholar
  55. 55.
    Kuiken T, Rimmelzwaan G, van Riel D, van Amerongen G, Baars M, Fouchier R, Osterhaus A (2004) Avian H5N1 influenza in cats. Science 306:241PubMedGoogle Scholar
  56. 56.
    Enserink M, Kaiser J (2004) Virology. Avian flu finds new mammal hosts. Science 305:1385PubMedGoogle Scholar
  57. 57.
    Weber S, Harder T, Starick E, Beer M, Werner O, Hoffmann B, Mettenleiter TC, Mundt E (2007) Molecular analysis of highly pathogenic avian influenza virus of subtype H5N1 isolated from wild birds and mammals in northern Germany. J Gen Virol 88:554–558PubMedGoogle Scholar
  58. 58.
    de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, Hoang DM, Chau NV, Khanh TH, Dong VC et al (2006) Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 12:1203–1207PubMedGoogle Scholar
  59. 59.
    Banks J, Speidel E, Alexander DJ (1998) Characterisation of an avian influenza A virus isolated from a human–is an intermediate host necessary for the emergence of pandemic influenza viruses? Arch Virol 143:781–787PubMedGoogle Scholar
  60. 60.
    Kurtz J, Manvell RJ, Banks J (1996) Avian influenza virus isolated from a woman with conjunctivitis. Lancet 348:901–902PubMedGoogle Scholar
  61. 61.
    Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA, Munster V, Kuiken T, Rimmelzwaan GF, Schutten M, Van Doornum GJ et al (2004) Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci USA 101:1356–1361PubMedGoogle Scholar
  62. 62.
    Koopmans M, Vennema H, Heersma H, van Strien E, van Duynhoven Y, Brown D, Reacher M, Lopman B (2003) Early identification of common-source foodborne virus outbreaks in Europe. Emerg Infect Dis 9:1136–1142PubMedGoogle Scholar
  63. 63.
    van Kolfschooten F (2003) Dutch veterinarian becomes first victim of avian influenza. Lancet 361:1444PubMedGoogle Scholar
  64. 64.
    Bosman A (2004) Avian flu epidemic 2003. RIVM reportGoogle Scholar
  65. 65.
    Guo YJ, Krauss S, Senne DA, Mo IP, Lo KS, Xiong XP, Norwood M, Shortridge KF, Webster RG, Guan Y (2000) Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology 267:279–288PubMedGoogle Scholar
  66. 66.
    Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, Orr WK, Shortridge KF (1999) Human infection with influenza H9N2. Lancet 354:916–917PubMedGoogle Scholar
  67. 67.
    Lin YP, Shaw M, Gregory V, Cameron K, Lim W, Klimov A, Subbarao K, Guan Y, Krauss S, Shortridge K et al (2000) Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci USA 97:9654–9658PubMedGoogle Scholar
  68. 68.
    Choi YK, Ozaki H, Webby RJ, Webster RG, Peiris JS, Poon L, Butt C, Leung YH, Guan Y (2004) Continuing evolution of H9N2 influenza viruses in Southeastern China. J Virol 78:8609–8614PubMedGoogle Scholar
  69. 69.
    Gratzl E, Koehler H (1968) Gefluegelpest Spezielle Pathologie und Therapie der Gefluegelkrankheiten. Ferdinand Enke Verlag, Stuttgart, GermanyGoogle Scholar
  70. 70.
    Narayan O, Thorsen J, Hulland TJ, Ankeli G, Joseph PG (1972) Pathogenesis of lethal influenza virus infection in turkeys. I. Extraneural phase of infection. J Comp Pathol 82:129–137PubMedGoogle Scholar
  71. 71.
    Van Campen H, Easterday BC, Hinshaw VS (1989) Virulent avian influenza A viruses: their effect on avian lymphocytes and macrophages in vivo and in vitro. J Gen Virol 70(Pt 11):2887–2895PubMedGoogle Scholar
  72. 72.
    Van Campen H, Easterday BC, Hinshaw VS (1989) Destruction of lymphocytes by a virulent avian influenza A virus. J Gen Virol 70(Pt 2):467–472PubMedGoogle Scholar
  73. 73.
    Kobayashi Y, Horimoto T, Kawaoka Y, Alexander DJ, Itakura C (1996) Pathological studies of chickens experimentally infected with two highly pathogenic avian influenza viruses. Avian Pathol 25:285–304PubMedGoogle Scholar
  74. 74.
    Feldmann A, Schafer MK, Garten W, Klenk HD (2000) Targeted infection of endothelial cells by avian influenza virus A/FPV/Rostock/34 (H7N1) in chicken embryos. J Virol 74:8018–8027PubMedGoogle Scholar
  75. 75.
    Area E, Martin-Benito J, Gastaminza P, Torreira E, Valpuesta JM, Carrascosa JL, Ortin J (2004) 3D structure of the influenza virus polymerase complex: localization of subunit domains. Proc Natl Acad Sci USA 101:308–313PubMedGoogle Scholar
  76. 76.
    Fodor E, Smith M (2004) The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J Virol 78:9144–9153PubMedGoogle Scholar
  77. 77.
    Deng T, Sharps JL, Brownlee GG (2006) Role of the influenza virus heterotrimeric RNA polymerase complex in the initiation of replication. J Gen Virol 87:3373–3377PubMedGoogle Scholar
  78. 78.
    Engelhardt OG, Smith M, Fodor E (2005) Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase II. J Virol 79:5812–5818PubMedGoogle Scholar
  79. 79.
    Ye Q, Krug RM, Tao YJ (2006) The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature 444:1078–1082PubMedGoogle Scholar
  80. 80.
    Hay AJ, Lomniczi B, Bellamy AR, Skehel JJ (1977) Transcription of the influenza virus genome. Virology 83:337–355PubMedGoogle Scholar
  81. 81.
    Ulmanen I, Broni BA, Krug RM (1981) Role of two of the influenza virus core P proteins in recognizing cap 1 structures (m7G pppNm) on RNAs and in initiating viral RNA transcription. Proc Natl Acad Sci USA 78:7355–7359PubMedGoogle Scholar
  82. 82.
    Shi L, Summers DF, Peng Q, Galarz JM (1995) Influenza A virus RNA polymerase subunit PB2 is the endonuclease which cleaves host cell mRNA and functions only as the trimeric enzyme. Virology 208:38–47PubMedGoogle Scholar
  83. 83.
    Poon LL, Pritlove DC, Fodor E, Brownlee GG (1999) Direct evidence that the poly(A) tail of influenza A virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template. J Virol 73:3473–3476PubMedGoogle Scholar
  84. 84.
    Zheng H, Lee HA, Palese P, Garcia-Sastre A (1999) Influenza A virus RNA polymerase has the ability to stutter at the polyadenylation site of a viral RNA template during RNA replication. J Virol 73:5240–5243PubMedGoogle Scholar
  85. 85.
    Poon LL, Pritlove DC, Sharps J, Brownlee GG (1998) The RNA polymerase of influenza virus, bound to the 5' end of virion RNA, acts in cis to polyadenylate mRNA. J Virol 72:8214–8219PubMedGoogle Scholar
  86. 86.
    Hay AJ, Skehel JJ, McCauley J (1982) Characterization of influenza virus RNA complete transcripts. Virology 116:517–522PubMedGoogle Scholar
  87. 87.
    Castrucci MR, Kawaoka Y (1993) Biologic importance of neuraminidase stalk length in influenza A virus. J Virol 67:759–764PubMedGoogle Scholar
  88. 88.
    Deshpande KL, Naeve CW, Webster RG (1985) The neuraminidases of the virulent and avirulent A/Chicken/Pennsylvania/83 (H5N2) influenza A viruses: sequence and antigenic analyses. Virology 147:49–60PubMedGoogle Scholar
  89. 89.
    Els MC, Air GM, Murti KG, Webster RG, Laver WG (1985) An 18-amino acid deletion in an influenza neuraminidase. Virology 142:241–247PubMedGoogle Scholar
  90. 90.
    Luo G, Chung J, Palese P (1993) Alterations of the stalk of the influenza virus neuraminidase: deletions and insertions. Virus Res 29:141–153PubMedGoogle Scholar
  91. 91.
    Steuler H, Rohde W, Scholtissek C (1984) Sequence of the neuraminidase gene of an avian influenza A virus (A/parrot/ulster/73, H7N1). Virology 135:118–124PubMedGoogle Scholar
  92. 92.
    Khatchikian D, Orlich M, Rott R (1989) Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the hemagglutinin gene of an influenza virus. Nature 340:156–157PubMedGoogle Scholar
  93. 93.
    Orlich M, Khatchikian D, Teigler A, Rott R (1990) Structural variation occurring in the hemagglutinin of influenza virus A/turkey/Oregon/71 during adaptation to different cell types. Virology 176:531–538PubMedGoogle Scholar
  94. 94.
    Bergmann M, Garcia-Sastre A, Palese P (1992) Transfection-mediated recombination of influenza A virus. J Virol 66:7576–7580PubMedGoogle Scholar
  95. 95.
    Orlich M, Gottwald H, Rott R (1994) Nonhomologous recombination between the hemagglutinin gene and the nucleoprotein gene of an influenza virus. Virology 204:462–465PubMedGoogle Scholar
  96. 96.
    Pasick J, Handel K, Robinson J, Copps J, Ridd D, Hills K, Kehler H, Cottam-Birt C, Neufeld J, Berhane Y, Czub S (2005) Intersegmental recombination between the hemagglutinin and matrix genes was responsible for the emergence of a highly pathogenic H7N3 avian influenza virus in British Columbia. J Gen Virol 86:727–731PubMedGoogle Scholar
  97. 97.
    Suarez DL, Senne DA, Banks J, Brown IH, Essen SC, Lee CW, Manvell RJ, Mathieu-Benson C, Moreno V, Pedersen JC et al (2004) Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerg Infect Dis 10:693–699PubMedGoogle Scholar
  98. 98.
    Subbarao EK, London W, Murphy BR (1993) A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 67:1761–1764PubMedGoogle Scholar
  99. 99.
    Massin P, van der WS, Naffakh N (2001) Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses. J Virol 75:5398–5404PubMedGoogle Scholar
  100. 100.
    Gao P, Watanabe S, Ito T, Goto H, Wells K, McGregor M, Cooley AJ, Kawaoka Y (1999) Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong. J Virol 73:3184–3189PubMedGoogle Scholar
  101. 101.
    Hatta M, Gao P, Halfmann P, Kawaoka Y (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842PubMedGoogle Scholar
  102. 102.
    Salomon R, Franks J, Govorkova EA, Ilyushina NA, Yen HL, Hulse-Post DJ, Humberd J, Trichet M, Rehg JE, Webby RJ et al (2006) The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J Exp Med 203:689–697PubMedGoogle Scholar
  103. 103.
    Shinya K, Hamm S, Hatta M, Ito H, Ito T, Kawaoka Y (2004) PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology 320:258–266PubMedGoogle Scholar
  104. 104.
    Govorkova EA, Rehg JE, Krauss S, Yen HL, Guan Y, Peiris M, Nguyen TD, Hanh TH, Puthavathana P, Long HT et al (2005) Lethality to ferrets of H5N1 influenza viruses isolated from humans and poultry in 2004. J Virol 79:2191–2198PubMedGoogle Scholar
  105. 105.
    Puthavathana P, Auewarakul P, Charoenying PC, Sangsiriwut K, Pooruk P, Boonnak K, Khanyok R, Thawachsupa P, Kijphati R, Sawanpanyalert P (2005) Molecular characterization of the complete genome of human influenza H5N1 virus isolates from Thailand. J Gen Virol 86:423–433PubMedGoogle Scholar
  106. 106.
    Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG (2005) Characterization of the 1918 influenza virus polymerase genes. Nature 437:889–893PubMedGoogle Scholar
  107. 107.
    Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster RG, Matsuoka Y, Yu K (2005) Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79:12058–12064PubMedGoogle Scholar
  108. 108.
    Gabriel G, Abram M, Keiner B, Wagner R, Klenk HD, Stech J (2007) Differential polymerase activity in avian and mammalian cells determines host range of influenza virus. J Virol 81:9601–9604PubMedGoogle Scholar
  109. 109.
    Naffakh N, Massin P, Escriou N, Crescenzo-Chaigne B, van der WS (2000) Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses. J GenVirol 81:1283–1291Google Scholar
  110. 110.
    Gabriel G, Herwig A, Klenk HD (2008) Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog 4:e11PubMedGoogle Scholar
  111. 111.
    Tarendeau F, Boudet J, Guilligay D, Mas PJ, Bougault CM, Boulo S, Baudin F, Ruigrok RW, Daigle N, Ellenberg J et al (2007) Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nat Struct Mol Biol 14:229–233PubMedGoogle Scholar
  112. 112.
    Tarendeau F, Crepin T, Guilligay D, Ruigrok RW, Cusack S, Hart DJ (2008) Host determinant residue lysine 627 lies on the surface of a discrete, folded domain of influenza virus polymerase PB2 subunit. PLoS Pathog 4:e1000136PubMedGoogle Scholar
  113. 113.
    Mayer D, Molawi K, Martinez-Sobrido L, Ghanem A, Thomas S, Baginsky S, Grossmann J, Garcia-Sastre A, Schwemmle M (2007) Identification of cellular interaction partners of the influenza virus ribonucleoprotein complex and polymerase complex using proteomic-based approaches. J Proteome Res 6:672–682PubMedGoogle Scholar
  114. 114.
    Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O'Neill R, Schickli J, Palese P et al (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7:1306–1312PubMedGoogle Scholar
  115. 115.
    Chang S, Zhang J, Liao X, Zhu X, Wang D, Zhu J, Feng T, Zhu B, Gao GF, Wang J et al (2007) Influenza Virus Database (IVDB): an integrated information resource and analysis platform for influenza virus research. Nucleic Acids Res 35:D376–380PubMedGoogle Scholar
  116. 116.
    Russell RJ, Gamblin SJ, Haire LF, Stevens DJ, Xiao B, Ha Y, Skehel JJ (2004) H1 and H7 influenza hemagglutinin structures extend a structural classification of hemagglutinin subtypes. Virology 325:287–296PubMedGoogle Scholar
  117. 117.
    Stevens J, Corper AL, Basler CF, Taubenberger JK, Palese P, Wilson IA (2004) Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303:1866–1870PubMedGoogle Scholar
  118. 118.
    Chen J, Lee KH, Steinhauer DA, Stevens DJ, Skehel JJ, Wiley DC (1998) Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95:409–417PubMedGoogle Scholar
  119. 119.
    Wilson IA, Skehel JJ, Wiley DC (1981) Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289:366–373PubMedGoogle Scholar
  120. 120.
    Ha Y, Stevens DJ, Skehel JJ, Wiley DC (2002) H5 avian and H9 swine influenza virus hemagglutinin structures: possible origin of influenza subtypes. Embo J 21:865–875PubMedGoogle Scholar
  121. 121.
    Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312:404–410PubMedGoogle Scholar
  122. 122.
    Eisen MB, Sabesan S, Skehel JJ, Wiley DC (1997) Binding of the influenza A virus to cell-surface receptors: structures of five hemagglutinin-sialyloligosaccharide complexes determined by X-ray crystallography. Virology 232:19–31PubMedGoogle Scholar
  123. 123.
    Gamblin SJ, Haire LF, Russell RJ, Stevens DJ, Xiao B, Ha Y, Vasisht N, Steinhauer DA, Daniels RS, Elliot A et al (2004) The structure and receptor-binding properties of the 1918 influenza hemagglutinin. Science 303:1838–1842PubMedGoogle Scholar
  124. 124.
    Ha Y, Stevens DJ, Skehel JJ, Wiley DC (2001) X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci USA 98:11181–11186PubMedGoogle Scholar
  125. 125.
    Ha Y, Stevens DJ, Skehel JJ, Wiley DC (2003) X-ray structure of the hemagglutinin of a potential H3 avian progenitor of the 1968 Hong Kong pandemic influenza virus. Virology 309:209–218PubMedGoogle Scholar
  126. 126.
    Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569PubMedGoogle Scholar
  127. 127.
    Wang Q, Tian X, Chen X, Ma J (2007) Structural basis for receptor specificity of influenza B virus hemagglutinin. Proc Natl Acad Sci USA 104:16874–16879PubMedGoogle Scholar
  128. 128.
    Matrosovich MN, Klenk HD, Kawaoka Y (2006) Receptor specificity, host-range and pathogenicity of influenza viruses. In: Kawaoka Y (ed) Influenza virology: current topics. Horizon Press, Wymondham, pp 95–137Google Scholar
  129. 129.
    Rogers GN, Paulson JC (1983) Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373PubMedGoogle Scholar
  130. 130.
    Matrosovich M, Matrosovich T, Uhlendorff J, Garten W, Klenk HD (2007) Avian-virus-like receptor specificity of the hemagglutinin impedes influenza virus replication in cultures of human airway epithelium. Virology 361:384–390PubMedGoogle Scholar
  131. 131.
    Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD (2004) Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci USA 101:4620–4624PubMedGoogle Scholar
  132. 132.
    Nicholls JM, Chan MC, Chan WY, Wong HK, Cheung CY, Kwong DL, Wong MP, Chui WH, Poon LL, Tsao SW et al (2007) Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nat Med 13:147–149PubMedGoogle Scholar
  133. 133.
    Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y (2006) Avian flu: influenza virus receptors in the human airway. Nature 440:435–436PubMedGoogle Scholar
  134. 134.
    van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T (2006) H5N1 virus attachment to lower respiratory tract. Science 312:399PubMedGoogle Scholar
  135. 135.
    van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T (2007) Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am J Pathol 171:1215–1223PubMedGoogle Scholar
  136. 136.
    Yao L, Korteweg C, Hsueh W, Gu J (2007) Avian influenza receptor expression in H5N1-infected and noninfected human tissues. FASEB J. doi: DOI:10.1096/fj.1006-7880com
  137. 137.
    Matrosovich MN, Gambarian AS, Klenk HD (2008) Receptor specificity of influenza viruses and its alteration during interspecies transmission. In: Klenk HD, Matrosovich MN, Stech J (eds) Avian influenza, vol 27. Karger, Basel, pp 134–155Google Scholar
  138. 138.
    Matrosovich MN, Gambaryan AS, Teneberg S, Piskarev VE, Yamnikova SS, Lvov DK, Robertson JS, Karlsson KA (1997) Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 233:224–234PubMedGoogle Scholar
  139. 139.
    Matrosovich M, Tuzikov A, Bovin N, Gambarian A, Klimov A, Cox N, Castrucci M, Donatelli I, Kawaoka Y (2000) Alterations of receptor-binding properties of H1, H2 and H3 avian influenza virus hemagglutinins upon introduction into mammals. J Virol 74:8502–8512PubMedGoogle Scholar
  140. 140.
    Klenk HD, Rott R, Orlich M, Blodorn J (1975) Activation of influenza A viruses by trypsin treatment. Virology 68:426–439PubMedGoogle Scholar
  141. 141.
    Lazarowitz SG, Choppin PW (1975) Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68:440–454PubMedGoogle Scholar
  142. 142.
    Bosch FX, Garten W, Klenk HD, Rott R (1981) Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology 113:725–735PubMedGoogle Scholar
  143. 143.
    Garten W, Bosch FX, Linder D, Rott R, Klenk HD (1981) Proteolytic activation of the influenza virus hemagglutinin: the structure of the cleavage site and the enzymes involved in cleavage. Virology 115:361–374PubMedGoogle Scholar
  144. 144.
    Garten W, Klenk HD (1983) Characterization of the carboxypeptidase involved in the proteolytic cleavage of the influenza hemagglutinin. J Gen Virol 64(Pt 10):2127–2137PubMedGoogle Scholar
  145. 145.
    Garten W, Linder D, Rott R, Klenk HD (1982) The cleavage site of the hemagglutinin of fowl plague virus. Virology 122:186–190PubMedGoogle Scholar
  146. 146.
    Garten W, Klenk HD (2008) Cleavage activation of the influenza virus hemagglutinin and its role in pathogenesis. In: Klenk HD, Matrosovich MN, Stech J (eds) Avian influenza, vol 27. Karger, Basel, pp 156–167Google Scholar
  147. 147.
    Klenk HD, Garten W (1994) Host cell proteases controlling virus pathogenicity. Trends Microbiol 2:39–43PubMedGoogle Scholar
  148. 148.
    Steinhauer DA (1999) Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 258:1–20PubMedGoogle Scholar
  149. 149.
    Guenther I, Glatthaar B, Doller G, Garten W (1993) A H1 hemagglutinin of a human influenza A virus with a carbohydrate-modulated receptor binding site and an unusual cleavage site. Virus Res 27:147–160Google Scholar
  150. 150.
    Kawaoka Y, Yamnikova S, Chambers TM, Lvov DK, Webster RG (1990) Molecular characterization of a new hemagglutinin, subtype H14, of influenza A virus. Virology 179:759–767PubMedGoogle Scholar
  151. 151.
    Boettcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M (2006) Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol 80:9896–9898Google Scholar
  152. 152.
    Tashiro M, Ciborowski P, Klenk HD, Pulverer G, Rott R (1987) Role of Staphylococcus protease in the development of influenza pneumonia. Nature 325:536–537PubMedGoogle Scholar
  153. 153.
    Stieneke-Groeber A, Vey M, Angliker H, Shaw E, Thomas G, Roberts C, Klenk HD, Garten W (1992) Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. Embo J 11:2407–2414Google Scholar
  154. 154.
    Seidah NG, Chretien M (1999) Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res 848:45–62PubMedGoogle Scholar
  155. 155.
    Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W (1992) Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 360:358–361PubMedGoogle Scholar
  156. 156.
    Horimoto T, Nakayama K, Smeekens SP, Kawaoka Y (1994) Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J Virol 68:6074–6078PubMedGoogle Scholar
  157. 157.
    Neumann G, Kawaoka Y (2006) Host range restriction and pathogenicity in the context of influenza pandemic. Emerg Infect Dis 12:881–886PubMedGoogle Scholar
  158. 158.
    Kawaoka Y, Webster RG (1989) Interplay between carbohydrate in the stalk and the length of the connecting peptide determines the cleavability of influenza virus hemagglutinin. J Virol 63:3296–3300PubMedGoogle Scholar
  159. 159.
    Kawaoka Y, Naeve CW, Webster RG (1984) Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin? Virology 139:303–316PubMedGoogle Scholar
  160. 160.
    Li SQ, Orlich M, Rott R (1990) Generation of seal influenza virus variants pathogenic for chickens, because of hemagglutinin cleavage site changes. J Virol 64:3297–3303PubMedGoogle Scholar
  161. 161.
    Morsy J, Garten W, Rott R (1994) Activation of an influenza virus A/turkey/Oregon/71 HA insertion variant by the subtilisin-like endoprotease furin. Virology 202:988–991PubMedGoogle Scholar
  162. 162.
    Garcia M, Crawford JM, Latimer JW, Rivera-Cruz E, Perdue ML (1996) Heterogeneity in the hemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. J Gen Virol 77(Pt 7):1493–1504PubMedGoogle Scholar
  163. 163.
    Perdue ML, Garcia M, Senne D, Fraire M (1997) Virulence-associated sequence duplication at the hemagglutinin cleavage site of avian influenza viruses. Virus Res 49:173–186PubMedGoogle Scholar
  164. 164.
    Banks J, Speidel ES, Moore E, Plowright L, Piccirillo A, Capua I, Cordioli P, Fioretti A, Alexander DJ (2001) Changes in the hemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy. Arch Virol 146:963–973PubMedGoogle Scholar
  165. 165.
    Varghese JN, Laver WG, Colman PM (1983) Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 303:35–40PubMedGoogle Scholar
  166. 166.
    Blok J, Air GM (1982) Block deletions in the neuraminidase genes from some influenza A viruses of the N1 subtype. Virology 118:229–234PubMedGoogle Scholar
  167. 167.
    Colman PM, Varghese JN, Laver WG (1983) Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303:41–44PubMedGoogle Scholar
  168. 168.
    Mitnaul LJ, Matrosovich MN, Castrucci MR, Tuzikov AB, Bovin NV, Kobasa D, Kawaoka Y (2000) Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J Virol 74:6015–6020PubMedGoogle Scholar
  169. 169.
    Wagner R, Wolff T, Herwig A, Pleschka S, Klenk HD (2000) Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. J Virol 74:6316–6323PubMedGoogle Scholar
  170. 170.
    Hausmann J, Kretzschmar E, Garten W, Klenk HD (1995) N1 neuraminidase of influenza virus A/FPV/Rostock/34 has haemadsorbing activity. J Gen Virol 76(Pt 7):1719–1728PubMedGoogle Scholar
  171. 171.
    Kobasa D, Rodgers ME, Wells K, Kawaoka Y (1997) Neuraminidase hemadsorption activity, conserved in avian influenza A viruses, does not influence viral replication in ducks. J Virol 71:6706–6713PubMedGoogle Scholar
  172. 172.
    Laver WG, Colman PM, Webster RG, Hinshaw VS, Air GM (1984) Influenza virus neuraminidase with hemagglutinin activity. Virology 137:314–323PubMedGoogle Scholar
  173. 173.
    Nuss JM, Air GM (1991) Transfer of the hemagglutinin activity of influenza virus neuraminidase subtype N9 into an N2 neuraminidase background. Virology 183:496–504PubMedGoogle Scholar
  174. 174.
    Varghese JN, Colman PM, van Donkelaar A, Blick TJ, Sahasrabudhe A, McKimm-Breschkin JL (1997) Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases. Proc Natl Acad Sci USA 94:11808–11812PubMedGoogle Scholar
  175. 175.
    Uhlendorff J, Matrosovich T, Klenk HD, Matrosovich M (2009) Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses. Arch Virol 154:945–957PubMedGoogle Scholar
  176. 176.
    Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD (2004) Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 78:12665–12667PubMedGoogle Scholar
  177. 177.
    Palese P, Tobita K, Ueda M, Compans RW (1974) Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61:397–410PubMedGoogle Scholar
  178. 178.
    Herrler G, Rott R, Klenk HD, Muller HP, Shukla AK, Schauer R (1985) The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO J 4:1503–1506PubMedGoogle Scholar
  179. 179.
    Rosenthal PB, Zhang X, Formanowski F, Fitz W, Wong CH, Meier-Ewert H, Skehel JJ, Wiley DC (1998) Structure of the hemagglutinin-esterase-fusion glycoprotein of influenza C virus. Nature 396:92–96PubMedGoogle Scholar
  180. 180.
    Hay AJ, Collins PJ, Russell RJ (2008) Antivirals and resistance. In: Klenk HD, Matrosovich MN, Stech J (eds) Avian influenza. Karger, Basel, pp 252–271Google Scholar
  181. 181.
    Haller O, Kochs G, Staeheli P (2008) Influenza a virus virulence and innate immunity: Recent insights from new mouse models. In: Klenk HD, Matrosovich MN, Stech J (eds) Avian influenza. Karger, Basel, pp 195–209Google Scholar
  182. 182.
    Neumann G, Noda T, Kawaoka Y (2009) Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459:931–939PubMedGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Institut für VirologieMarburgGermany

Personalised recommendations