Skip to main content

Weak Solutions to a Model for Crystal Growth from the Melt in Changing Magnetic Fields

  • Conference paper
  • First Online:
Optimal Control of Coupled Systems of Partial Differential Equations

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 158))

Abstract

We present a model for crystal growth from the melt that accounts for the interaction between melt flow, heating process, and additional applied alternating or travelling magnetic fields. Functional setting and variational formulation are derived for the quasi-stationary approximation of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bossavit. Electromagnétisme en vue de la modélisation. Springer, Berlin, Heidelberg, New York, 2004.

    MATH  Google Scholar 

  2. F. Cap. Einführung in die Plasmaphysik I, II, III. Akademie Verlag, Berlin, 1972.

    Google Scholar 

  3. S. Chandrasekhar. Hydrodynamic and hydromagnetic stability. Dover Publications Inc., New York, 1981.

    MATH  Google Scholar 

  4. P.-E. Druet. Higher integrability of the lorentz force for weak solutions to Maxwell’s equations in complex geometries. Preprint 1270 of the Weierstrass Institute for Applied Mathematics and Stochastics, Berlin, 2007. Available in pdf-format at http://www.wias-berlin.de/publications/preprints/1270.

    Google Scholar 

  5. [Dru08] P.-E. Druet. Weak solutions to a stationary heat equation with nonlocal radiation boundary condition and right-hand side in L p (p≥1). To appear in Math. Meth. Appl. Sci., 2008. http://dx.doi.org/10.1002/mma.1029.

    Google Scholar 

  6. Donald D. Gray and A. Giorgini. The validity of the Boussinesq approximation for liquids and gases. Int. J. Heat Mass Transfer, 19:545–551, 1976.

    Article  Google Scholar 

  7. [GM06] R. Griesse and A.J. Meir. Modeling of a MHD free surface problem arising in Cz crystal growth. In Proceedings of the 5th IMACS Symposium on Mathematical Modelling (5th MATHMOD), Vienna, 2006.

    Google Scholar 

  8. M. Hinze and S. Ziegenbalg. Optimal control of the free boundary in a two-phase Stefan problem with flow driven by convection. Z. Angew. Math. Mech., 87:430–448, 2007.

    Article  MathSciNet  Google Scholar 

  9. [Jac99] J.D. Jackson. Classical Electrodynamics. John Wiley and Sons, Inc., third edition, 1999.

    Google Scholar 

  10. O. Klein, P. Philip, and J. Sprekels. Modelling and simulation of sublimation growth in sic bulk single crystals. Interfaces and Free Boundaries, 6(1):295–314, 2004.

    Article  MathSciNet  Google Scholar 

  11. C. Lechner, O. Klein, and P.-E. Druet. Development of a software for the numerical simulation of VCz growth under the influence of a traveling magnetic field. Journal of Crystal Growth, 303:161–164, 2007.

    Article  Google Scholar 

  12. C. Meyer. Optimal Control of Semilinear Elliptic Equations with Applications to Sublimation Crystal Crowth. PhD thesis, Technische Universität Berlin, Germany, 2006.

    Google Scholar 

  13. P. Monk. Finite element methods for Maxwell’s equations. Clarendon press, Oxford, 2003.

    Book  Google Scholar 

  14. C. Meyer, P. Philip, and F. Tröltzsch. Optimal control of a semilinear pde with nonlocal radiation interface conditions. SIAM Journal On Control and Optimization (SICON), 45:699–721, 2006.

    Article  MathSciNet  Google Scholar 

  15. P. Philip. Transient Numerical Simulation of Sublimation Growth of SiC Bulk Single Crystals. Modeling, Finite Volume Method, Results. PhD thesis, Department of Mathematics, Humboldt University of Berlin, Germany, 2003. Report No. 22, Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Berlin.

    Google Scholar 

  16. J. Rappaz and R. Touzani. On a two-dimensional magnetohydrodynamic problem, i. modeling and analysis. RAIRO Modél. Math. Anal., Num., 26:347–364, 1992.

    Article  Google Scholar 

  17. [Rud07] P. Rudolph. Travelling magnetic fields applied to bulk crystal growth from the melt: The step from basic research to industrial scale. To appear in J. Crystal Growth, 2007. http://dx.doi.org/10.1016/j.jcrysgro.2007.11.036.

    Google Scholar 

  18. T. Tiihonen. Stefan-Boltzmann radiation on non-convex surfaces Math. Meth. in Appl. Sci., 20(1):47–57, 1997.

    Article  MathSciNet  Google Scholar 

  19. A. Voigt. Numerical Simulation of Industrial Crystal Growth. PhD thesis, Technische Universität München, Germany, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Druet, PÉ. (2009). Weak Solutions to a Model for Crystal Growth from the Melt in Changing Magnetic Fields. In: Kunisch, K., Sprekels, J., Leugering, G., Tröltzsch, F. (eds) Optimal Control of Coupled Systems of Partial Differential Equations. International Series of Numerical Mathematics, vol 158. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-8923-9_7

Download citation

Publish with us

Policies and ethics