Skip to main content

A New Non-linear Semidefinite Programming Algorithm with an Application to Multidisciplinary Free Material Optimization

  • Conference paper
  • First Online:
Optimal Control of Coupled Systems of Partial Differential Equations

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 158))

Abstract

A new method and algorithm for the efficient solution of a class of nonlinear semidefinite programming problems is introduced. The new method extends a concept proposed recently for the solution of convex semidefinite programs based on the sequential convex programming (SCP) idea. In the core of the method, a generally non-convex semidefinite program is replaced by a sequence of subproblems, in which nonlinear constraint and objective functions defined in matrix variables are approximated by block separable convex models. Global convergence is proved under reasonable assumptions. The article is concluded by numerical experiments with challenging Free Material Optimization problems subject to displacement constraints.

This work has been partially supported by the EU Commission in the Sixth Framework Program, Project No. 30717 PLATO-N.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Alizadeh, J. Eckstein, N. Noyan, and G. Rudolf. Arrival rate approximation by nonnegative cubic splines. Operations Research, 56:140–156, 2008.

    Article  MathSciNet  Google Scholar 

  2. A. Ben-Tal, M. Kočvara, A. Nemirovski, and J. Zowe. Free material design via semidefinite programming. The multi-load case with contact conditions. SIAM J. Optimization, 9:813–832, 1997.

    Article  Google Scholar 

  3. A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization. MPS-SIAM Series on Optimization. SIAM Philadelphia, 2001.

    Book  Google Scholar 

  4. M. Bendsøe and O. Sigmund. Topology Optimization. Theory, Methods and Applications. Springer-Verlag, Heidelberg, 2002.

    MATH  Google Scholar 

  5. M.P. Bendsøe, J.M. Guades, R.B. Haber, P. Pedersen, and J.E. Taylor. An analytical model to predict optimal material properties in the context of optimal structural design. J. Applied Mechanics, 61:930–937, 1994.

    Article  MathSciNet  Google Scholar 

  6. K.U. Bletzinger. Extended method of moving asymptotes based on second-order information. Struct. Multidiscip. Optim., 5(3):175–183, 1993.

    Article  Google Scholar 

  7. F.J. Bonnans and A. Shapiro. Perturbation Analysis of Optimization Problems. Springer-Verlag New York, 2000.

    Book  Google Scholar 

  8. B. Borchers. A c library for semidefinite programming. Optimization Methods and Software, 11(1):613–623, 1999.

    Article  MathSciNet  Google Scholar 

  9. R. Correa and C.H. Ramirez. A global algorithm for nonlinear semidefinite programming. SIAM J. Optim., 15:1791–1820, 2004.

    Article  MathSciNet  Google Scholar 

  10. E. de Klerk, D.V. Pasechnik, and A. Schrijver. Reduction of symmetric semidefinite programs using the regular*-representation. Mathematical Programming, 109(2/3), 2007.

    Google Scholar 

  11. B. Fares, D. Noll, and P. Apkarian. Robust control via sequential semidefinite programming. SIAM Journal on Control and Optimization, 40(6):1791–1820, 2002.

    Article  MathSciNet  Google Scholar 

  12. C. Fleury. Conlin: An efficient dual optimizer based on convex approximation concepts. Struct. Optim., 1:81–89, 1989.

    Article  Google Scholar 

  13. C. Fleury. Efficient approximation concepts using second order information. Int. J. Num. Meth. Engrg., 28:2041–2058, 1989.

    Article  MathSciNet  Google Scholar 

  14. K. Fujisawa, M. Kojima, and K. Nakata. Exploiting sparsity in primal-dual interiorpoint method for semidefinite programming. Mathematical Programming, 79:235–253, 1997.

    MathSciNet  MATH  Google Scholar 

  15. L. Vanderberghe, H. Wolkowicz, R. Saigal. Handbook of Semidefinite Programming — Theory, Algorithms and Applications. Kluwer Academic Publishers, 2000.

    Google Scholar 

  16. F. Jarre. An interior method for nonconvex semidefinite programs. Optimization and Engineering, 1:347–372, 2000.

    Article  MathSciNet  Google Scholar 

  17. M. Kočvara, M. Stingl, and J. Zowe. Free material optimization: recent progress. Optimization, 57:79–100, 2008.

    Article  MathSciNet  Google Scholar 

  18. M. Kojima, S. Shindoh, and S. Hara. Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM Journal on Optimization, 7:86–125, 1997.

    Article  MathSciNet  Google Scholar 

  19. M. Kočvara and M. Stingl. PENNON — a code for convex nonlinear and semidefinite programming. Optimization Methods and Software, 18(3):317–333, 2003.

    Article  MathSciNet  Google Scholar 

  20. M. Kočvara and M. Stingl. The worst-case multiple-load fmo problem revisited. In N. Olhoff, M.P. Bendsoe and O. Sigmund, editors, IUTAM-Symposium on Topological Design Optimization of Structures, Machines and Material: Status and Perspectives, pages 403–411. Springer, 2006.

    Google Scholar 

  21. M. Kočvara and M. Stingl. Free material optimization: Towards the stress constraints. Structural and Multidisciplinary Optimization, 33(4–5):323–335, 2007.

    Article  MathSciNet  Google Scholar 

  22. M. Kočvara and M. Stingl. On the solution of large-scale sdp problems by the modified barrier method using iterative solvers. Mathematical Programming (Series B), 109(2–3):413–444, 2007.

    Article  MathSciNet  Google Scholar 

  23. D. Noll. Local convergence of an augmented lagrangian method for matrix inequality constrained programming. Optimization Methods and Software, 22(5):777–802, 2007.

    Article  MathSciNet  Google Scholar 

  24. R. Polyak. Modified barrier functions: Theory and methods. Math. Prog., 54:177–222, 1992.

    Article  MathSciNet  Google Scholar 

  25. J. Povh, F. Rendl, and A. Wiegele. A boundary point method to solve semidefinite programs. Computing, 78(3):277–286, 2006.

    Article  MathSciNet  Google Scholar 

  26. U. Ringertz. On finding the optimal distribution of material properties. Structural Optimization, 5:265–267, 1993.

    Article  Google Scholar 

  27. M. Stingl and M. Kočvara, G. Leugering. A sequential convex semidefinite programming algorithm with an application to multiple-load free material optimization. SIAM J. Optimization, accepted. 2008.

    Google Scholar 

  28. D. Sun, J. Sun, and L. Zhang. The rate of convergence of the augmented lagrangian method for nonlinear semidefinite programming. Math. Program., 114(2):349–391, 2008.

    Article  MathSciNet  Google Scholar 

  29. K. Svanberg. The method of moving asymptotes — a new method for structural optimization. International Journal for numerical methods in Engineering, 24:359–373, 1987.

    Article  MathSciNet  Google Scholar 

  30. K. Svanberg. A class of globally convergent optimization methods based on conservative separable approximations. SIOPT, 12:555–573, 2002.

    Article  MathSciNet  Google Scholar 

  31. M.J. Todd. Semidefinite optimization. Acta Numerica, 10:515–560, 2001.

    Article  MathSciNet  Google Scholar 

  32. R.H. Tutuncu, K.C. Toh, and M.J. Todd. Solving semidefinite-quadratic-linear programs using sdpt3. Mathematical Programming Ser. B, 95:189–217, 2003.

    Article  MathSciNet  Google Scholar 

  33. L. Vanderberghe and S. Boyd. Semidefinite programming. SIAM Rev., 38:49–95, 1996.

    Article  MathSciNet  Google Scholar 

  34. H. Waki, S. Kim, M. Kojima, and M. Muramatsu. Sums of squares and semidefinite programming relaxation for polynomial optimization problems with structured sparsity. SIAM J. Optim., 17:218–242, 2006.

    Article  MathSciNet  Google Scholar 

  35. R. Werner. Free Material Optimization. PhD thesis, Institute of Applied Mathematics II, Friedrich-Alexander University of Erlangen-Nuremberg, 2000.

    Google Scholar 

  36. X. Zhao, D. Sun, and K.C. Toh. A Newton-CG augmented Lagrangian method for semidefinite programming. Optimization online, http://www.optimization-online.org/db_html/2008/03/1930.html, 2008.

    Google Scholar 

  37. C. Zillober. Eine global konvergente Methode zur Lösung von Problemen aus der Strukturoptimierung. PhD thesis, Technische Universität München, 1992.

    Google Scholar 

  38. C. Zillober. Global convergence of a nonlinear programming method using convex approximations. Numerical Algorithms. 27(3):256–289, 2001.

    Article  MathSciNet  Google Scholar 

  39. J. Zowe, M. Kočvara, and M. Bendsøe. Free material optimization via mathematical programming. Math. Prog., Series B, 79:445–466, 1997.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Stingl, M., Kočvara, M., Leugering, G. (2009). A New Non-linear Semidefinite Programming Algorithm with an Application to Multidisciplinary Free Material Optimization. In: Kunisch, K., Sprekels, J., Leugering, G., Tröltzsch, F. (eds) Optimal Control of Coupled Systems of Partial Differential Equations. International Series of Numerical Mathematics, vol 158. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-8923-9_16

Download citation

Publish with us

Policies and ethics