Advertisement

On the Block Numerical Range of Nonnegative Matrices

  • K.-H. Förster
  • N. Hartanto
Part of the Operator Theory: Advances and Applications book series (OT, volume 188)

Abstract

We present a Perron-Frobenius Theory for the block numerical range of entrywise nonnegative square matrices similar to that known for the special cases of the spectrum and of the standard numerical range. For irreducible matrices we prove a corresponding version of Wielandt’s Lemma. With help of the Frobenius Form we study the block numerical range of a nonnegative matrix and its peripheral part. Finally we give an application to the numerical range of Perron Polynomials.

Keywords

Matrix Polynomial Nonnegative Matrix Numerical Range Nonnegative Matrice Irreducible Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Berman, A., Plemmons, R.J., Nonnegative Matrices in the Mathematical Sciences, Classiscs in Appied Mathematics. vol. 9, SIAM; Philadelphia, 1994 (Revised reprint of the 1979 original).Google Scholar
  2. [2]
    Foerster, K.-H., Nagy, B, Spektraleigenschaften von Matrix-und Operatorpolynomen. Sitzungsberichte d. Berliner Math. Gesellschaft, 1988–1992, 243–262. Berlin, Vorstand der Gesellschaft, 1994. MR 96b:47009.Google Scholar
  3. [3]
    Foerster, K.-H., Nagy, B., On Spectra of Expansion Graphs and Matrix Polynomials. Linear Algebra and its Applications 363 (2003), 89–101.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Gau, H.L., Wu, P.Y., Companion matrices: reducibility, numerical ranges and similarity to contractions. Linear Algebra and its Applications 383 (2004), 127–142.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Gustafson, K.E., Rao, D.K.M., Numerical Range — The Field of Values of Linear Operators and Matrices, Springer New York, 1997.Google Scholar
  6. [6]
    Haagerup, P., de la Harpe, P., The numerical radius of a nilpotent operator on a Hilbert space. Proc. Amer. Math. Soc.115 (1992), 171–179.CrossRefMathSciNetGoogle Scholar
  7. [7]
    Horn, R.A., Johnson, C.R., Matrix Analysis. Cambridge University Press: Cambridge, 1985.MATHGoogle Scholar
  8. [8]
    Horn, R.A., Johnson, C.R., Topics in Matrix Analysis. Cambridge University Press: Cambridge, 1991.MATHGoogle Scholar
  9. [9]
    Issos, J.N., The Field of Values of non-Negative Irreducible Matrices. Ph.D. Thesis, Auburn University, 1966.Google Scholar
  10. [10]
    Li, C.-K., Rodman, L., Numerical Range of Matrix Polynomials. SIAM J. Matrix Anal. Appl. 15(4) (1994), 1256–1265.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Li, C.-K., Tam, B.-S., Wu, P.Y., The Numerical Range of a Nonnegative Matrix. Linear Algebra and its Applications 350 (2002), 1–23.MATHMathSciNetGoogle Scholar
  12. [12]
    Maroulas, J., Psarrakos, P.J., Tsatsomeros, M.J., Perron-Frobenius Type Results on the Numerical Range. Linear Algebra and its Applications 348 (2002), 49–62.Google Scholar
  13. [13]
    Minc, H., Nonnegative Matrices. Wiley New York, 1988.MATHGoogle Scholar
  14. [14]
    Moustakas, U., Majorisierung und Spektraleigenschaften positiver Operatoren in Banachverbänden. Dissertation, Universität Tübingen, 1984Google Scholar
  15. [15]
    Psarrakos, P.J., Tsatsomeros M.J., A Primer of Perron-Frobenius Theory for Matrix Polynomials. Linear Algebra and its Applications 393 (2004), 333–351.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Schneider, H., The Influence of Marked Reduced Graph of a Nonnegative Matrix on the Jordan Form and on related Properties: A Survey. Linear Algebra and its Applications 84 (1986), 161–189.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Smyth, M.R.F., West, T.T., The Minimum Diagonal Element of a Positive Matrix. Studia Mathematica 131(1) (1998), 95–99.MATHMathSciNetGoogle Scholar
  18. [18]
    Tretter, Ch., Wagenhofer, M., The Block Numerical Range of an n × n Block Operator Matrix. SIAM J. Matrix Anal. Appl. 24(4) (2003), 1003–1017.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Wagenhofer, M., Block Numerical Ranges. Dissertation, Universität Bremen, 2007.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • K.-H. Förster
    • 1
  • N. Hartanto
    • 1
  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations