Earth Sciences and Mathematics pp 1003-1024 | Cite as

# A Review of Earthquake Statistics: Fault and Seismicity-Based Models, ETAS and BASS

## Abstract

There are two fundamentally different approaches to assessing the probabilistic risk of earthquake occurrence. The first is fault based. The statistical occurrence of earthquakes is determined for mapped faults. The applicable models are renewal models in that a tectonic loading of faults is included. The second approach is seismicity based. The risk of future earthquakes is based on the past seismicity in the region. These are also known as cluster models. An example of a cluster model is the epidemic type aftershock sequence (ETAS) model. In this paper we discuss an alternative branching aftershock sequence (BASS) model. In the BASS model an initial, or seed, earthquake is specified. The subsequent earthquakes are obtained from statistical distributions of magnitude, time, and location. The magnitude scaling is based on a combination of the Gutenberg-Richter scaling relation and the modified Båth’s law for the scaling relation of aftershock magnitudes relative to the magnitude of the main earthquake. Omori’s law specifies the distribution of earthquake times, and a modified form of Omori’s law specifies the distribution of earthquake locations. Unlike the ETAS model, the BASS model is fully self-similar, and is not sensitive to the low magnitude cutoff.

## Keywords

Large Earthquake Main Shock Aftershock Sequence Large Aftershock Probabilistic Seismic Hazard Assessment## Preview

Unable to display preview. Download preview PDF.

## References

- Båth, M. (1965),
*Lateral inhomogeneities in the upper mantle*, Tectonophysics*2*, 483–514.CrossRefGoogle Scholar - Bowman, D. D., Ouillon, G., Sammis, C.G., Sornette, A., and Sornette, D. (1998),
*An observational test of the critical earthquake concept*. J. Geophys. Res.*103*, 24359–24372.CrossRefGoogle Scholar - Bufe, C.G. and Varnes, D.J. (1993),
*Predictive modeling of the seismic cycle of the greater San Francisco Bay region*, J. Geophys. Res.*98*, 9871–9883.CrossRefGoogle Scholar - Console, R. and Murru, M. (2001),
*A simple and testable model for earthquake clustering*, J. Geophys. Res.*106*, 8699–8711.CrossRefGoogle Scholar - Console, R., Murru, M., and Catalli, F. (2006),
*Physical and stochastic models of earthquake clustering*, Tectonophysics*417*, 141–153.CrossRefGoogle Scholar - Console, R., Murru, M., and Lombardi, A.M. (2003),
*Refining earthquake clustering models*, J. Geophys. Res.*108*, 2468.CrossRefGoogle Scholar - Ellsworth, W.L., Mathews, M.V., Nadeau, R.M., Nishenko, S.P., Reasenberg, P.A., and Simpson, R.W. (1999),
*A physically-based earthquake recurrence model for estimation of long-term earthquake probabilities*, Open-File Report 99-522, US Geological Survey.Google Scholar - Felzer, K.R., Becker, T.W., Abercrombie, R.E., Ekstrom, G., and Rice, J.R. (2002)
*Triggering of the 1999 m*_{w}*7.1 hector mine earthquake by aftershocks of the 1992 m*_{w}*7.3 landers earthquake*, J. Geophys. Res.*107*(B9), 2190.CrossRefGoogle Scholar - Felzer, K.R., Abercrombie, R.E., and Ekstrom, G. (2003),
*Secondary aftershocks and their importance for aftershock forecasting*. Bull. Seismol. Soc. Am.*93*(4), 1433–1448.CrossRefGoogle Scholar - Felzer, K.R., Abercrombie, R.E., and Ekstrom, G. (2004),
*A common origin for aftershocks, foreshocks, and multiplets*, Bull. Seismol. Soc. Am.*94*, 88–98.CrossRefGoogle Scholar - Felzer, K.R. and Brodsky, E.E. (2006),
*Decay of aftershock density with distance indicates triggering by dynamic stress*, Nature,*441*, 735–738.CrossRefGoogle Scholar - Field, E.H. (2007a).
*Overview of the working group for the development of regional earthquake likelihood models (RELM)*, Seis. Res. Lett.*78*, 7–16.CrossRefGoogle Scholar - Field, E.H. (2007b).
*A summary of previous working groups on California earthquake probabilities*, Seismol. Soc. Am. Bull.*97*, 1033–1053.CrossRefGoogle Scholar - Frankel, A.F., Muller, C., Barnhard, T., Perkins, D., Leyendecker, E.V., Dickman, N., Hanson, S., and Hopper, M. (1996),
*National seismic hazard maps*, Open-File Report 96-532, US Geological Survey.Google Scholar - Gabrielov, A., Newman, W.I., and Turcotte, D.L. (1999),
*Exactly soluble hierarchical clustering model: Inverse cascades, self-similarity, and scaling*, Phys. Rev. E,*60*, 5293.CrossRefGoogle Scholar - Gersterberger, M. Wiemer, S., and Jonese, L. (2004),
*Real-time forecasts of tomorrow’s earthquakes in California: A new mapping tool*, Open-File Report 2004-1390, US Geological Survey.Google Scholar - Gersterberger, M.C., Wiemer, S., Jones, L.M., and Reasenberg, P.A. (2005),
*Real-time forecasts of tomorrow’s earthquakes in California*, Nature*435*, 328–331.CrossRefGoogle Scholar - Goes, S.D.B. and Ward, S.N. (1994),
*Synthetic seismicity for the San Andreas fault*, Annali Di Geofisica*37*, 1495–1513.Google Scholar - Gross, S. and Rundle, J.B. (1998),
*A systematic test of time-to-failure analysis*, Geophys. J. Int.*133*, 57–64.CrossRefGoogle Scholar - Guo, Z.Q. and Ogata, Y. (1997),
*Statistical relations between the parameters of aftershocks in time, space, and magnitude*, J. Geophys. J. Res.*102*(B2), 2857–2873.CrossRefGoogle Scholar - Gutenberg, B. and Richter, C.F.,
*Seismicity of the Earth and Associated Phenomena*(Princeton University Press, Princeton, NJ 1954).Google Scholar - Helmstetter, A. (2003),
*Is earthquake triggering driven by small earthquakes*? Phys. Rev. Let.*91*, 0585014.Google Scholar - Elmstetter, A. and Sornette, D. (2002a),
*Diffusion of epicenters of earthquake aftershocks, Omori’s law, and generalized continuous-time random walk models*, Phys. Rev. E*66*(6), 061104.CrossRefGoogle Scholar - Helmstetter, A. and Sornette, D. (2002b),
*Subcritical and supercritical regimes in epidemic models of earthquake aftershocks*, J. Geophys. Res.*107*(B10), 2237.CrossRefGoogle Scholar - Helmstetter, A. and Sornette, D. (2003a),
*Foreshocks explained by cascades of triggered seismicity*, J. Geophys. Rev,*108*(B10), 2457.CrossRefGoogle Scholar - Helmstetter, A. and Sornette, D. (2003b),
*Predictability in the epidemic-type aftershock sequence model of interacting triggered seismicity*, J. Geophys. Rev.*108*(B10), 2482.CrossRefGoogle Scholar - Helmstter, A.S. and Sornette, D. (2003c), Båth’s
*law derived from the Gutenberg-Richter law and from aftershock properties*, Geophys. Res. Lett.*30*(20), 2069.CrossRefGoogle Scholar - Helmstter, A.S. and Sornette, D. (2003d),
*Importance of direct and indirect triggered seismicity in the ETAS model of seismicity.*Geophys. Res. Lett.*30*(11), 1576.CrossRefGoogle Scholar - Helmstter, A.S. and Sornette, D., and Grasso, J.R. (2003a),
*Mainshocks are aftershocks of conditional foreshocks: How do fore shock statistical properties emerge from aftershock laws*, J. Geophys. Res.*108*(B1, 2046).CrossRefGoogle Scholar - Helmstter, A.S., Ouillon, G., and Sornette, D. (2003b),
*Are aftershocks of large California earthquakes diffusing*? J. Geophys. Res.*108*(B10):2483.CrossRefGoogle Scholar - Helmstter, A., Hergarten, S., and Sornette, D. (2004),
*Properties of foreshocks and aftershocks of the non-conservative self-organized critical Olami-Feder-Christensen model*, Phys. Rev. E*70*, 046120.CrossRefGoogle Scholar - Helmstter, A., Kagan, Y.Y., and Jackson, D.D. (2006).
*Comparison of short-term and time-independent earthquake forecast models for southern California*, Bull. Seismol. Soc. Am.*96*, 90–106.CrossRefGoogle Scholar - Holliday, J.R., Chen, C.C., Tiampo, K.F., Rundle, J.B., Turcotte, D.L., and Donnellan, A. (2007),
*A RELM earthquake forcast based on pattern informatics*, Seis. Res. Lett.*78*(1), 87–93.CrossRefGoogle Scholar - Holliday, J.R., Nanjo, K.Z., Tiampo, K.F., Rundle, J.B., and Turcotte, D.L. (2005),
*Earthquake forecasting and its verification*, Nonlinear Processes in Geophysics,*12*, 965–977.Google Scholar - Holliday, J.R., Rundle, J.B., Tiampo, K.F., Klein, W., and Donnellan, A. (2006a),
*Modification of the pattern informatics method for forecasting large earthquake events using complex eigenvectors*, Tectonophys.*413*, 87–91.CrossRefGoogle Scholar - Holliday, J.R., Rundle, J.B., Tiampo, K.F., Klein, W., and Donnwllan, A. (2006b),
*Systematic procedural and sensitivity analysis of the pattern informatics method for forecasting large*(*M*τ-5)*earthquake events in southern California*Pure Appl. Geophys.Google Scholar - Kagan, Y.Y. and Knopoff, L. (1981),
*Stochastic synthesis of earthquake catalogs*, J. Geophys. Res*86*(4), 2853–2862.CrossRefGoogle Scholar - Keilis-Borok, V.I. (1990),
*The lithosphere of the earth as a nonlinear system with implications for earthquake prediction*, Rev. Geophys.*28*, 19–34.CrossRefGoogle Scholar - Keilis-Borok, V. (2002),
*Earthquake predictions: State-of-the-art and emerging possibilities*, An. Rev. Earth Planet. Sci.*30*:1–33.CrossRefGoogle Scholar - Keilis-Borok, V., Shebalin, P., Gabrielov, A., and Turcotte, D. (2004),
*Reverse tracing of short-term earthquake precursors*, Phys. Earth Planet. Int.*145*, 75–85.CrossRefGoogle Scholar - Kossobokov, V.G., Keilis-Borok, V.I., Turcotte, D.L., and Malamud, B.D. (2000),
*Implications of a statistical physics approach for earthquake hazard assessment and forecasting*, Pure Appl. Geophys.*157*, 2323–2349.CrossRefGoogle Scholar - Lepiello, E., Godano, C., and De Arcangelis, L. (2007),
*Dynamically scaling in branching models for seismicity*Phys. Rev. Lett.*98*, 098501.CrossRefGoogle Scholar - Main, I. (1996),
*Statistical physics, seismogenesis, and seismic hazard*Rev. Geophys.*34*, 433–462.CrossRefGoogle Scholar - Main, I.G. (1999),
*Applicability of time-to-failure analysis to accelerated strain before earthquakes and volcanic eruptions*, Geophys. J. Int*139*, F1–F6.CrossRefGoogle Scholar - Newman, W.I., Turcotte, D.L., and Gabrielov, A.M. (1997),
*Fractal trees with side branching*, Fractals*5*, 603–614.CrossRefGoogle Scholar - Ogata, Y. (1988),
*Statistical models for earthquake occurrences and residual analysis for point processes*, J. Am. Stat. Assoc.*83*, 9–27.CrossRefGoogle Scholar - Ogata, Y. (1989),
*Statistical model for standard seismicity and detection of anomalies by residual analysis*, Tectonophysics*169*, 159–174.CrossRefGoogle Scholar - Ogata, Y. (1992),
*Detection of precursory relative quiescence before great earthquakes through a statistical model*, J. Geophys Res.*97*, 19845–19871.CrossRefGoogle Scholar - Ogata, Y. (1998),
*Space-time point process models for earthquake occurrences*, Ann. Inst. Statist. Math.*50*, 379–402.CrossRefGoogle Scholar - Ogata, Y. (1999),
*Seismicity analysis through point-process modeling: A review*, Pure Appl. Geophys.*155*, 471–507.CrossRefGoogle Scholar - Ogata, Y. (2001a),
*Exploratory analysis of earthquake clusters by likelihood-based trigger models*, J. Appl. Probab.*38A*, 202–212.CrossRefGoogle Scholar - Ogata, Y. (2001b),
*Increased probability of large earthquakes near aftershock regions with relative quiescence*, J. Geophys. Res.*106*, 8729–8744.CrossRefGoogle Scholar - Ogata, Y. (2004),
*Space-time model for regional seismicity and detection of crustal stress changes*, J. Geophys. Res.*109*, B06308.CrossRefGoogle Scholar - Ogata, Y., Matsuura, R.S., and Katusura, K. (1993),
*Fast likelihood computation of epidemic type aftershock-sequence model*, Geophys. Res. Lett.*20*, 2143–2146.CrossRefGoogle Scholar - Ogata, Y., Jones, L.M., and Toda, S. (2003),
*When and where the aftershock activity was depressed: Contrasting decay patterns of the proximate large earthquakes in southern California*, J. Geophys. Res.*108*, 2318.CrossRefGoogle Scholar - Ogata, Y. and Zhuang, J. (2006),
*Space-time ETAS models and an improved extension*, Tectonophysics*413*, 13–23.CrossRefGoogle Scholar - Ossadnik, P. (1992),
*Branch order and ramification analysis of large diffusion limited aggregation clusters*, Phys. Rev. A*45*, 1058–1066.CrossRefGoogle Scholar - Peckham, S.D. (1995),
*New results for self-similar trees with applications to river networks*, Water Resour. Res.*31*, 1023–1029.CrossRefGoogle Scholar - Pelletier, J.D. (1999),
*Self-organization and scaling relationships of evolving river networks*, J. Geophys. Res.*104*, 7359–7375.CrossRefGoogle Scholar - Reasenberg, P.A. (1999),
*Foreshock occurrence rates before large earthquake worldwide*, Pure. Appl. Geophys.*155*, 355–379.CrossRefGoogle Scholar - Reasenberg, P.A. and Jones, L.M. (1989),
*Earthquake hazard after a mainshock in California*, Science*243*(4895), 1173–1176.CrossRefGoogle Scholar - Rikitake, T.,
*Earthquake Forecasting and Warning*, (D. Reidel Publishing Co, Dordrecht. 1982)Google Scholar - Robison, R. and Benites, R. (1995),
*Synthetic seismicity models Of multiple interacting faults*, J. Geophys. Res.*100*, 18229–18238.CrossRefGoogle Scholar - Robison, R. and Benites, R. (1996),
*Synthetic seismicity models for the Wellington Region, New Zealand: Implications for the temporal distribution of large events*, J. Geophys. Res.*101*, 27833–27844.CrossRefGoogle Scholar - Rundle, J.B., Tiampo, K.F., Klein, W., and Martins, J.S.S. (2002),
*Self-organization in leaky threshold systems: The influence of near-mean field dynamics and its implications for earthquakes, neurobiology, and forecasting*, Proc. NatL. Acad. Sci. U.S.A.*99*, 2514–2521, Suppl. 1.CrossRefGoogle Scholar - Rundle, J.B., Turcotte, D.L., Shcherbakov, R., Klein, W., and Sammis, C. (2003),
*Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems*, Rev. Geophys.*41*(4), 1019.CrossRefGoogle Scholar - Rundle, J.B., Rundle, P.B., Donnellan, A., and Fox, G. (2004),
*Gutenberg-Richter statistics in topologically realistic system-level earthquake stress-evolution simulations*, Earth, Planets and Space*55*(8), 761–771.Google Scholar - Rundle, J.B., Rundle, P.B. and Donnellan, A. (2005),
*A simulation-based approach to forecasting the next great San Francisco earthquake*, Proc. Natl. Acad. Sci.*102*(43), 15363–15367.CrossRefGoogle Scholar - Rundle, P.B., Rundle, J.B., Tiampo, K.F., Donnellan, A., and Turcotte, D.L. (2006),
*Virtual California: Fault model, frictional parameters, applications*, Pure AppL. Geophys.*163*, 1819–1846.CrossRefGoogle Scholar - Saichev, A., Helmstetter, A., and Sornette, D. (2005),
*Power-law distributions of offspring and generation numbers in branching models of earthquake triggering*, Pure Appl. Geophys.*162*, 1113–1134.CrossRefGoogle Scholar - Saichev, A. and Sornette, D. (2004),
*Anomalous power law distribution of total lifetimes of branching processes: Application to earthquake aftershock sequences*, Phys. Rev. E*70*(4), 046123.CrossRefGoogle Scholar - Saichev, A. and Sornette, D. (2005a),
*Distribution of the largest aftershocks in branching models of triggered seismicity: Theory of the universal*Båth’s*law*, Phys. Rev. E*71*(5), 056127.CrossRefGoogle Scholar - Saichev, A. and Sornette, D. (2005b),
*Vere-Jones*’*self-similar branching model*, Phys. Rev. E*72*, 056122.CrossRefGoogle Scholar - Saichev, A. and Sornette, D. (2006a),
*Power-law distribution of seismic rates: theory and data analysis*, Eur. Phys. J.*B49*, 377–401.Google Scholar - Saichev, A. and Sornette, D. (2006b),
*Renormalization of branching models of triggered seismicity from total to observed seismicity*, Eur. Phys. J.*B51*, 443–459.Google Scholar - Saichev, A. and Sornette, D. (2006c), “
*Universal*” distribution of interearthquake times explained, Phys. Rev. Lett. 97, 078501.CrossRefGoogle Scholar - Saichev, A. and Sornette, D. (2007a),
*Power-law distributions of seismic rates*, Tectonophysics*431*, 7–13.CrossRefGoogle Scholar - Saichev, A. and Sornette, D. (2007b),
*Theory of Earthquake recurrence times*, J. Geophys. Res.*112*, B04313.CrossRefGoogle Scholar - Sammis, C.G., Bowman, D.D., and King, G. (2004),
*Anomalous seismicity and accelerating moment release preceding the 2001–2002 earthquakes in northern Baha California, Mexico*, Pure Appl. Geophys*161*, 2369–2378.CrossRefGoogle Scholar - Shcherbakov, R. and Turcotte, D.L. (2004),
*A modified form of*Båth’s*law*, Bull. Seismol. Soc. Am.*94*, 1968–1975.CrossRefGoogle Scholar - Shcherbakov, R., Turcotte, D.L., and Rundle, J.B. (2004),
*A generalized Omori’s law for earthquake aftershock decay*, Geophys. Res. Lett.*31*, L11613.CrossRefGoogle Scholar - Shcherbakov, R., Turcotte, D.L., and Rundle, J.B. (2005),
*Aftershock statistics*, Pure. Appl. Geophys.*162*, 1051–1076.CrossRefGoogle Scholar - Shebalin, P., Keilis-Borok, V., Zaliapin, I., Uyeda, S., Nagao, T., and Tsybin, N. (2004),
*Advance short-term prediction of the large Tokachi-oki earthquake, September 25, M = 8.1: A case history*, Earth Planets Space*56*, 715–724.Google Scholar - Sornette, D. and Helmstetter, A. (2002),
*Occurrence of finite-time singularities in epedemic models of rupture, earthquakes, and starquakes*, Phys. Rev. Lett.*89*(15), 158501.CrossRefGoogle Scholar - Sornette, D. and Werner, M.J. (2005a),
*Apparent clustering and apparent background earthquakes biased by undetected seismicity*, J. Geophys. Res.*110*, B09303.CrossRefGoogle Scholar - Sornette, D. and Werner, M.J. (2005b),
*Constraints on the size of the smallest triggering earthquake from the epidemic-type aftershock sequence model, Bath’s law, and observed aftershock sequences*, J. Geophys. Res.*110*(B8), B08304.CrossRefGoogle Scholar - Tiampo, K.F., Rundle, J.B., McGinnis, S., Gross, S.J., and Klein, W. (2002a),
*Eigenpatterns in southern California seismicity*, J. Geophys. Res.*107*(B12), 2354.CrossRefGoogle Scholar - Tiampo, K.F., Rundle, J.B., McGinnis, S., and Klein, W. (2002b),
*Pattern dynamics and forecast methods in seismically active regions*, Pure Appl. Geophys.*159*, 2429–2467.CrossRefGoogle Scholar - Tokunaga, E. (1978),
*Consideration on the composition of drainage networks and their evolution*, Geographical Rep. Tokya Metro. Univ.*13*, 1–27.Google Scholar - Turcotte, D.L., Holliday, J.R., and Rundle, J.B. (2007),
*BASS, an alternative to ETAS*, Geophys. Res. Lett.*34*, L12303.CrossRefGoogle Scholar - Turcotte, D.L. and Tewman, W.I. (1996),
*Symmetries in geology and geophysics*Proc. Natl. Acad. Sci.*93*, 14295–14300.CrossRefGoogle Scholar - Turcotte, D.L., Pelletier, J.D., and Newman, W.I. (1998),
*Networks with side branching in biology*, J. Theor. BioL.*193*, 577–592.CrossRefGoogle Scholar - Utsu, T. (1984),
*Estimation of parameters for recurrence models of earthquakes*, Earthq. Res. Insti.-Univ. Tokyo,*59*, 53–66.Google Scholar - Vere-Jones, D. (1969),
*A note on the statistical interpretation of Båth’s law*, Bull. SEismol. Soc. Am.*59*, 1535–1541.Google Scholar - Vere-Jones, D. (2005),
*A class of self-similar random measure*, Advan. AppLi. Probab.*37*, 908–914.CrossRefGoogle Scholar - Ward S.N. (1992),
*An application of synthetic seismicity in earthquake statistics: The Middle America trench*, J. Geophys. Res.*97*(B5), 6675–6682.CrossRefGoogle Scholar - Ward S.N. (1996),
*A synthetic seismicity model for southern California: cycles, probabilities, and hazard*, J. Geophys. Res.*101*(B10), 22393–22418.CrossRefGoogle Scholar - Ward S.N. (2000),
*San Francisco Bay Area earthquake simulations: a step toward a standard physical earthquake model*, Bull. Scismol. Soc. Am.*90*(2), 370–386.CrossRefGoogle Scholar - Working Group on California Earthquake Probabilities (1988),
*Probabilities of large earthquakes occurring in California on the San Andreas fault*, Open-File Report 88-398, US Geological Survey.Google Scholar - Working Group on California Earthquake Probabilities (1990),
*Probabilities of large earthquakes in the San Francisco Bay region, California*, Circular*1053*, US Geological Survey.Google Scholar - Working Group on California Earthquake Probabilities (1995),
*Scismic hazards in southern California: probable earthquakes, 1994–2024*,*SEis. Soc. Am. Bull. 85*, 379–439.Google Scholar - Working Group on California Earthquake Probabilities (2003)
*Earthquake probabilities in the San Francisco Bay Region, 2002–2031*, Open-File Report 2003-214, US Geological Survey.Google Scholar - Yakovlev, G., Turcotte, D.L., Rundle, J.B., and Rundle, P.B. (2006),
*Simulation-based distributions of earthquake recurrence times on the San Andreas fault system*, Bull. Seismol. Soc. Am.*96*, 1995–2007.CrossRefGoogle Scholar - Yamanaka, Y. and Shimazaki, K. (1990),
*Scaling relationship between the number of aftershocks and the size of the main shock*, J. Phys. Earth*38*(4), 305–324.Google Scholar - Zhuang, J. and Ogata, Y. (2006),
*Properties of the probability distribution associated with the largest event in an earthquake cluster and their implications to foreshocks*, Phys. Rev. E*73*, 046134.CrossRefGoogle Scholar - Zhuang, J., Ogata, Y., and Vere-Jones, D. (2002),
*Stochastic declustering of space-time earthquake occurrences*, J. Am. Stat. Assoc.*97*, 369–380.CrossRefGoogle Scholar - Zhuang, J., Ogata, Y., and Vere-Jones, D. (2004),
*Analyzing earthquake clustering features by using stochastic reconstruction*, J. Geophys. Res.*109*, B05301.CrossRefGoogle Scholar