Bayesian Integrals

Part of the Oberwolfach Seminars book series (OWS, volume 39)


A key player in Bayesian statistics is the integrated likelihood function of a model for given data. The integral, also known as the marginal likelihood, is taken over the model’s parameter space with respect to a probability measure that quantifies prior belief. While Chapter 2 was concerned with maximizing the likelihood function, we now seek to integrate that same function. This chapter aims to show how algebraic methods can be applied to various aspects of this problem. Section 5.1 discusses asymptotics of Bayesian integrals for large sample size, while Section 5.2 concerns exact evaluation of integrals for small sample size.


Bayesian Information Criterion Marginal Likelihood Prior Density Independence Model Exact Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag AG 2009

Personalised recommendations