Inflammatory bowel disease and the hygiene hypothesis: an argument for the role of helminths

  • David E. Elliott
  • Joel V. Weinstock
Part of the Progress in Inflammation Research book series (PIR)


Variations in more than 40 genetic loci can alter the risk for developing inflammatory bowel disease (IBD). However, the epidemiology of ulcerative colitis and Crohn’s disease suggest that a recent environmental change accounts for most of the disease risk. In this chapter we will introduce IBD and outline its dramatic rise in prevalence over the last 70 years. We will consider the effective eradication of helminths during this time period and the effects of helminths on immunity. We will review the current evidence that helminths induce regulatory immune circuits that suppress aberrant inflammation and may be useful clinically to treat immune-mediated disease.


Inflammatory Bowel Disease Ulcerative Colitis Intestinal Epithelium Lymphatic Filariasis Helminth Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fuss IJ, Neurath M, Boirivant M et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 1996; 157: 1261–70PubMedGoogle Scholar
  2. 2.
    West GA, Matsuura T, Levine AD et al. Interleukin 4 in inflammatory bowel disease and mucosal immune reactivity. Gastroenterology 1996; 110: 1683–95PubMedCrossRefGoogle Scholar
  3. 3.
    Raddatz D, Bockemuhl M, Ramadori G. Quantitative measurement of cytokine mRNA in inflammatory bowel disease: relation to clinical and endoscopic activity and outcome. Eur J Gastroenterol Hepatol 2005; 17: 547–57PubMedCrossRefGoogle Scholar
  4. 4.
    Fujino S, Andoh A, Bamba S et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003; 52: 65–70PubMedCrossRefGoogle Scholar
  5. 5.
    Nielsen OH, Kirman I, Rudiger N et al. Upregulation of interleukin-12 and −17 in active inflammatory bowel disease. Scand J Gastroenterol 2003; 38: 180–5PubMedCrossRefGoogle Scholar
  6. 6.
    Berndt U, Bartsch S, Philipsen L et al. Proteomic analysis of the inflamed intestinal mucosa reveals distinctive immune response profiles in Crohn’s disease and ulcerative colitis. J Immunol 2007; 179: 295–304PubMedGoogle Scholar
  7. 7.
    Holmen N, Lundgren A, Lundin S et al. Functional CD4+CD25 high regulatory T cells are enriched in the colonic mucosa of patients with active ulcerative colitis and increase with disease activity. Inflamm Bowel Dis 2006; 12: 447–56PubMedCrossRefGoogle Scholar
  8. 8.
    Maul J, Loddenkemper C, Mundt P et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology 2005; 128: 1868–78PubMedCrossRefGoogle Scholar
  9. 9.
    Grose RH, Thompson FM, Baxter AG et al. Deficiency of invariant NK T cells in Crohn’s disease and ulcerative colitis. Dig Dis Sci 2007; 52: 1415–22PubMedCrossRefGoogle Scholar
  10. 10.
    Porter CK, Tribble DR, Aliaga PA et al. Infectious gastroenteritis and risk of developing inflammatory bowel disease. Gastroenterology 2008; 135: 781–6PubMedCrossRefGoogle Scholar
  11. 11.
    Sokol H, Lay C, Seksik P et al. Analysis of bacterial bowel communities of IBD patients: what has it revealed? Inflamm Bowel Dis 2008; 14: 858–67PubMedCrossRefGoogle Scholar
  12. 12.
    Lodes MJ, Cong Y, Elson CO et al. Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest 2004; 113: 1296–306PubMedGoogle Scholar
  13. 13.
    Sitaraman SV, Klapproth JM, Moore DA III et al. Elevated flagellin-specific immunoglobulins in Crohn’s disease. Am J Physiol Gastrointest Liver Physiol 2005; 288: G403–G406PubMedCrossRefGoogle Scholar
  14. 14.
    Adams RJ, Heazlewood SP, Gilshenan KS et al. IgG antibodies against common gut bacteria are more diagnostic for Crohn’s disease than IgG against mannan or flagellin. Am J Gastroenterol 2008; 103: 386–96PubMedCrossRefGoogle Scholar
  15. 15.
    Ziegler TR, Luo M, Estivariz CF et al. Detectable serum flagellin and lipopolysaccharide and upregulated anti-flagellin and lipopolysaccharide immunoglobulins in human short bowel syndrome. Am J Physiol Regul Integr Comp Physiol 2008; 294: R402–R410PubMedGoogle Scholar
  16. 16.
    Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Ann Rev Immunol 2002; 20: 495–549CrossRefGoogle Scholar
  17. 17.
    Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007; 448: 427–34PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang Z, Zheng M, Bindas J et al. Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflammatory Bowel Diseases 2006; 12: 382–8PubMedCrossRefGoogle Scholar
  19. 19.
    Barrett JC, Hansoul S, Nicolae DL et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 2008; 40: 955–62PubMedCrossRefGoogle Scholar
  20. 20.
    Fisher SA, Tremelling M, Anderson CA et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet 2008; 40: 710–12PubMedCrossRefGoogle Scholar
  21. 21.
    Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411: 599–603PubMedCrossRefGoogle Scholar
  22. 22.
    Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411: 603–6PubMedCrossRefGoogle Scholar
  23. 23.
    Economou M, Trikalinos TA, Loizou KT et al. Differential effects of NOD2 variants on Crohn’s disease risk and phenotype in diverse populations: a metaanalysis. Am J Gastroenterol 2004; 99: 2393–404PubMedCrossRefGoogle Scholar
  24. 24.
    Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 2008; 8: 458–66PubMedCrossRefGoogle Scholar
  25. 25.
    Hampe J, Franke A, Rosenstiel P et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L 1. Nat Genet 2007; 39: 207–11PubMedCrossRefGoogle Scholar
  26. 26.
    Levine B, Deretic V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 2007; 7: 767–77PubMedCrossRefGoogle Scholar
  27. 27.
    Rioux JD, Xavier RJ, Taylor KD et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 2007; 39: 596–604PubMedCrossRefGoogle Scholar
  28. 28.
    Singh SB, Davis AS, Taylor GA et al. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 2006; 313: 1438–41PubMedCrossRefGoogle Scholar
  29. 29.
    Duerr RH, Taylor KD, Brant SR et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314: 1461–3PubMedCrossRefGoogle Scholar
  30. 30.
    Tremelling M, Cummings F, Fisher SA et al. IL23R variation determines susceptibility but not disease phenotype in inflammatory bowel disease. Gastroenterology 2007; 132: 1657–64PubMedCrossRefGoogle Scholar
  31. 31.
    Acosta-Rodriguez EV, Rivino L, Geginat J et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 2007; 8: 639–46PubMedCrossRefGoogle Scholar
  32. 32.
    Yamazaki T, Yang XO, Chung Y et al. CCR6 regulates the migration of inflammatory and regulatory T cells. J Immunol 2008; 181: 8391–401PubMedGoogle Scholar
  33. 33.
    Halfvarson J, Bodin L, Tysk C et al. Inflammatory bowel disease in a Swedish twin cohort: a long-term follow-up of concordance and clinical characteristics. Gastroenterology 2003; 124: 1767–73PubMedCrossRefGoogle Scholar
  34. 34.
    Allchin WH. Discussion on “Ulcerative Colitis.”: Introductory Address., 1909 v2 Edn 1909Google Scholar
  35. 35.
    Combe C, Saunders W. A singular case of stricture and thickening of the ileum, 4 Edn 1813Google Scholar
  36. 36.
    Crohn BB, Ginzburg L, Oppenheimer GD. Regional Ileitis: A Pathologic and Clinical Entity, 99 Edn 1932Google Scholar
  37. 37.
    Wells C. Ulcerative colitis and Crohn’s disease. Ann R Coll Surg Engl 1952; 11: 105–20PubMedGoogle Scholar
  38. 38.
    Kirsner JB. The historical basis of the idiopathic inflammatory bowel diseases. Inflamm Bowel Dis 1995; 1: 2–26CrossRefGoogle Scholar
  39. 39.
    Loftus EV, Jr. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 2004; 126: 1504–17PubMedCrossRefGoogle Scholar
  40. 40.
    Elliott DE, Summers RW, Weinstock JV. Helminths and the Modulation of Mucosal Inflammation, 21 Edn 2005Google Scholar
  41. 41.
    Sonnenberg A, Wasserman IH. Epidemiology of inflammatory bowel disease among U.S. military veterans. Gastroenterology 1991; 101: 122–30PubMedGoogle Scholar
  42. 42.
    Sonnenberg A. Occupational distribution of inflammatory bowel disease among German employees. Gut 1990; 31: 1037–40PubMedCrossRefGoogle Scholar
  43. 43.
    Kappelman MD, Rifas-Shiman SL, Kleinman K et al. The prevalence and geographic distribution of Crohn’s disease and ulcerative colitis in the United States. Clin Gastroenterol Hepatol 2007; 5: 1424–9PubMedCrossRefGoogle Scholar
  44. 44.
    Green C, Elliott L, Beaudoin C et al. A population-based ecologic study of inflammatory bowel disease: searching for etiologic clues. Am J Epidemiol 2006; 164: 615–23PubMedCrossRefGoogle Scholar
  45. 45.
    Rubin GP, Hungin AP, Kelly PJ et al. Inflammatory bowel disease: epidemiology and management in an English general practice population. Aliment Pharmacol Ther 2000; 14: 1553–9PubMedCrossRefGoogle Scholar
  46. 46.
    Gunesh S, Thomas GA, Williams GT et al. The incidence of Crohn’s disease in Cardiff over the last 75 years: an update for 1996–2005. Aliment Pharmacol Ther 2008; 27: 211–9PubMedGoogle Scholar
  47. 47.
    Molinie F, Gower-Rousseau C, Yzet T et al. Opposite evolution in incidence of Crohn’s disease and ulcerative colitis in Northern France (1988–1999) Gut 2004; 53: 843–8PubMedCrossRefGoogle Scholar
  48. 48.
    Lapidus A. Crohn’s disease in Stockholm County during 1990–2001: an epidemiological update. World J Gastroenterol 2006; 12: 75–81PubMedGoogle Scholar
  49. 49.
    McDermott FT, Whelan G, St John DJ et al. Relative incidence of Crohn’s disease and ulcerative colitis in six Melbourne hospitals. Med J Aust 1987; 146: 525, 528–5, 529.PubMedGoogle Scholar
  50. 50.
    Lakatos L, Mester G, Erdelyi Z et al. Striking elevation in incidence and prevalence of inflammatory bowel disease in a province of western Hungary between 1977–2001. World Journal of Gastroenterology 2004; 10: 404–9PubMedGoogle Scholar
  51. 51.
    Ouyang Q, Tandon R, Goh KL et al. The emergence of inflammatory bowel disease in the Asian Pacific region. Curr Opin Gastroenterol 2005; 21: 408–13PubMedGoogle Scholar
  52. 52.
    Yang SK, Hong WS, Min YI et al. Incidence and prevalence of ulcerative colitis in the Songpa-Kangdong District, Seoul, Korea, 1986–1997. Journal of Gastroenterology & Hepatology 2000; 15: 1037–42CrossRefGoogle Scholar
  53. 53.
    Carr I, Mayberry JF. The effects of migration on ulcerative colitis: a three-year prospective study among Europeans and first-and second-generation South Asians in Leicester (1991–1994). American Journal of Gastroenterology 1999; 94: 2918–22PubMedGoogle Scholar
  54. 54.
    Jayanthi V, Probert CS, Pinder D et al. Epidemiology of Crohn’s disease in Indian migrants and the indigenous population in Leicestershire. Quarterly Journal of Medicine 1992; 82: 125–38PubMedGoogle Scholar
  55. 55.
    Stephen AM, Wald NJ. Trends in individual consumption of dietary fat in the United States, 1920–1984. Am J Clin Nutr 1990; 52: 457–69PubMedGoogle Scholar
  56. 56.
    Yach D, Wipfli H. A century of smoke. Ann Trop Med Parasitol 2006; 100: 465–79PubMedCrossRefGoogle Scholar
  57. 57.
    Birrenbach T, Bocker U. Inflammatory bowel disease and smoking: a review of epidemiology, pathophysiology, and therapeutic implications. Inflamm Bowel Dis 2004; 10: 848–59PubMedCrossRefGoogle Scholar
  58. 58.
    Elliott DE, Urban JFJ, Argo CK et al. Does the failure to acquire helminthic parasites predispose to Crohn’s disease? FASEB Journal 2000; 14: 1848–55PubMedCrossRefGoogle Scholar
  59. 59.
    Poinar G Jr, Buckley R. Nematode (Nematoda: Mermithidae) and hairworm (Nematomorpha: Chordodidae) parasites in Early Cretaceous amber. J Invertebr Pathol 2006; 93: 36–41PubMedCrossRefGoogle Scholar
  60. 60.
    Philippe H, Lartillot N, Brinkmann H. Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 2005; 22: 1246–53PubMedCrossRefGoogle Scholar
  61. 61.
    Mitreva M, Blaxter ML, Bird DM et al. Comparative genomics of nematodes. Trends Genet 2005; 21: 573–81PubMedCrossRefGoogle Scholar
  62. 62.
    Goncalves ML, Araujo A, Ferreira LF. Human intestinal parasites in the past: new findings and a review. Memorias do Instituto Oswaldo Cruz 2003; 98 Suppl 1: 103–18PubMedGoogle Scholar
  63. 63.
    Deelder AM, Miller RL, de Jonge N, Krijger FW. Detection of schistosome antigen in mummies. Lancet 1990; 335: 724–5PubMedCrossRefGoogle Scholar
  64. 64.
    Warren KS. The control of helminths: nonreplicating infectious agents of man. Annu Rev Public Health 1981; 2: 101–5PubMedCrossRefGoogle Scholar
  65. 65.
    Anonymous. The Rockefeller Commission for the Eradication of Hookworm Disease. Science 1909; 30: 635–6Google Scholar
  66. 66.
    Brown HW. Anthelmintics, new and old. Clin Pharmacol Ther 1969; 10: 5–21PubMedGoogle Scholar
  67. 67.
    Hubbard DW, Morgan PM, Yaeger RG et al. Intestinal parasite survey of kindergarten children in New Orleans. Pediatric Research 1974; 8: 652–8PubMedCrossRefGoogle Scholar
  68. 68.
    Wright WH. Current Status of Parasitic Diseases. Public Health Reports 1955; 70: 966–75PubMedGoogle Scholar
  69. 69.
    Kappus KD, Lundgren RGJ, Juranek DD et al. Intestinal parasitism in the United States: update on a continuing problem. Am J Trop Med Hyg 1994; 50: 705–13PubMedGoogle Scholar
  70. 70.
    Zimmermann WJ, Steele JH, Kagan IG. The changing status of trichiniasis in the U.S. population. Public Health Reports 1968; 83: 957–66PubMedGoogle Scholar
  71. 71.
    McNabb SJ, Jajosky RA, Hall-Baker PA et al. Summary of notifiable diseases-United States, 2006. MMWR Morb Mortal Wkly Rep 2008; 55: 1–92PubMedGoogle Scholar
  72. 72.
    Stoll NR. This wormy world. J Parasitol 1947; 33: 1–18CrossRefPubMedGoogle Scholar
  73. 73.
    Gale EA. A missing link in the hygiene hypothesis? Diabetologia 2002; 45: 588–94PubMedCrossRefGoogle Scholar
  74. 74.
    Hong ST, Chai JY, Choi MH et al. A successful experience of soil-transmitted helminth control in the Republic of Korea. Korean J Parasitol 2006; 44: 177–85Google Scholar
  75. 75.
    Bethony J, Brooker S, Albonico M et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 2006; 367: 1521–32PubMedCrossRefGoogle Scholar
  76. 76.
    Doetze A, Satoguina J, Burchard G et al. Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. International Immunology 2000; 12: 623–30PubMedCrossRefGoogle Scholar
  77. 77.
    Babu S, Blauvelt CP, Kumaraswami V et al. Regulatory networks induced by live parasites impair both Th1 and Th2 pathways in patent lymphatic filariasis: implications for parasite persistence. J Immunol 2006; 176: 3248–56PubMedGoogle Scholar
  78. 78.
    Bentwich Z, Weisman Z, Moroz C et al. Immune dysregulation in Ethiopian immigrants in Israel: relevance to helminth infections? Clinical & Experimental Immunology 1996; 103: 239–43CrossRefGoogle Scholar
  79. 79.
    Sabin EA, Araujo MI, Carvalho EM et al. Impairment of tetanus toxoid-specific Th1-like immune responses in humans infected with Schistosoma mansoni. Journal of Infectious Diseases 1996; 173: 269–72PubMedGoogle Scholar
  80. 80.
    Nookala S, Srinivasan S, Kaliraj P et al. Impairment of tetanus-specific cellular and humoral responses following tetanus vaccination in human lymphatic filariasis. Infect Immun 2004; 72: 2598–604PubMedCrossRefGoogle Scholar
  81. 81.
    Cooper PJ, Espinel I, Paredes W et al. Impaired tetanus-specific cellular and humoral responses following tetanus vaccination in human onchocerciasis: a possible role for interleukin-10 J Infect Dis 1998; 178: 1133–8PubMedCrossRefGoogle Scholar
  82. 82.
    Elias D, Wolday D, Akuffo H et al. Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacille Calmette-Guerin (BCG) vaccination. Clin Exp Immunol 2001; 123: 219–25PubMedCrossRefGoogle Scholar
  83. 83.
    Elias D, Britton S, Aseffa A et al. Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-beta production. Vaccine 2008; 26: 3897–902PubMedCrossRefGoogle Scholar
  84. 84.
    Cooper PJ, Chico ME, Losonsky G et al. Albendazole treatment of children with ascariasis enhances the vibriocidal antibody response to the live attenuated oral cholera vaccine CVD 103-HgR. J Infect Dis 2000; 182: 1199–206PubMedCrossRefGoogle Scholar
  85. 85.
    Borkow G, Leng Q, Weisman Z et al. Chronic immune activation associated with intestinal helminth infections results in impaired signal transduction and anergy. J Clin Invest 2000; 106: 1053–60PubMedCrossRefGoogle Scholar
  86. 86.
    Turner JD, Jackson JA, Faulkner H et al. Intensity of intestinal infection with multiple worm species is related to regulatory cytokine output and immune hyporesponsiveness. J Infect Dis 2008; 197: 1204–12PubMedCrossRefGoogle Scholar
  87. 87.
    Kullberg MC, Pearce EJ, Hieny SE et al. Infection with Schistosoma mansoni alters Th1/Th2 cytokine responses to a non-parasite antigen. J Immunol 1992; 148: 3264–70PubMedGoogle Scholar
  88. 88.
    Pearlman E, Kazura JW, Hazlett FEJ et al. Modulation of murine cytokine responses to mycobacterial antigens by helminth-induced T helper 2 cell responses. J Immunol 1993; 151: 4857–64PubMedGoogle Scholar
  89. 89.
    Sacco R, Hagen M, Sandor M et al. Established T(H1) granulomatous responses induced by active Mycobacterium avium infection switch to T(H2) following challenge with Schistosoma mansoni. Clin Immunol 2002; 104: 274–81PubMedCrossRefGoogle Scholar
  90. 90.
    Loke P, MacDonald AS, Robb A et al. Alternatively activated macrophages induced by nematode infection inhibit proliferation via cell-to-cell contact. Eur J Immunol 2000; 30: 2669–78PubMedCrossRefGoogle Scholar
  91. 91.
    Elliott DE, Metwali A, Leung J et al. Colonization with Heligmosomoides polygyrus suppresses mucosal IL-17 production. J Immunol 2008; 181: 2414–9PubMedGoogle Scholar
  92. 92.
    Ince MN, Elliott DE, Setiawan T et al. Heligmosomoides polygyrus induces TLR4 on murine mucosal T cells that produce TGFbeta after lipopolysaccharide stimulation. Journal of Immunology 2006; 176(2):726–9Google Scholar
  93. 93.
    Metwali A, Setiawan T, Blum AM et al. Induction of CD8+ regulatory T cells in the intestine by Heligmosomoides polygyrus infection. Am J Physiol Gastrointest Liver Physiol 2006; 291: G253–G259PubMedCrossRefGoogle Scholar
  94. 94.
    Finney CA, Taylor MD, Wilson MS et al. Expansion and activation of CD4(+)CD25(+) regulatory T cells in Heligmosomoides polygyrus infection. Eur J Immunol 2007; 37: 1874–86PubMedCrossRefGoogle Scholar
  95. 95.
    Maizels RM, Yazdanbakhsh M. Immune regulation by helminth parasites: cellular and molecular mechanisms. Nature Reviews 2003; Immunology 3: 733–44PubMedCrossRefGoogle Scholar
  96. 96.
    Thomas PG, Harn DA Jr. Immune biasing by helminth glycans. Cellular Microbiology 2004; 6: 13–22PubMedCrossRefGoogle Scholar
  97. 97.
    Goodridge HS, Wilson EH, Harnett W et al. Modulation of macrophage cytokine production by ES-62, a secreted product of the filarial nematode Acanthocheilonema viteae. J Immunol 2001; 167: 940–5PubMedGoogle Scholar
  98. 98.
    Liu LX, Buhlmann JE, Weller PF. Release of prostaglandin E2 by microfilariae of Wuchereria bancrofti and Brugia malayi. Am J Trop Med Hyg 1992; 46: 520–3PubMedGoogle Scholar
  99. 99.
    Gomez-Escobar N, Gregory WF, Maizels RM. Identification of tgh-2, a filarial nematode homolog of Caenorhabditis elegans daf-7 and human transforming growth factor beta, expressed in microfilarial and adult stages of Brugia malayi. Infection & Immunity 2000; 68: 6402–10CrossRefGoogle Scholar
  100. 100.
    Elliott DE, Summers RW, Weinstock JV. Helminths as governors of immune-mediated inflammation. International Journal for Parasitology 2007; 37: 457–64PubMedCrossRefGoogle Scholar
  101. 101.
    van Riet E, Hartgers FC, Yazdanbakhsh M. Chronic helminth infections induce immunomodulation: consequences and mechanisms. Immunobiology 2007; 212: 475–90PubMedCrossRefGoogle Scholar
  102. 102.
    Smith P, Mangan NE, Walsh CM et al. Infection with a helminth parasite prevents experimental colitis via a macrophage-mediated mechanism. J Immunol 2007; 178: 4557–66PubMedGoogle Scholar
  103. 103.
    Elliott D, Li J, Blum A et al. Exposure to schistosome eggs protects mice from TNBS-induced colitis. Am J Physiol 2003; 284: G385–G391Google Scholar
  104. 104.
    Hunter MM, Wang A, Hirota CL et al. Neutralizing anti-IL-10 antibody blocks the protective effect of tapeworm infection in a murine model of chemically induced colitis. J Immunol 2005; 174(11): 7368–75PubMedGoogle Scholar
  105. 105.
    Khan WI, Blennerhasset PA, Varghese AK et al. Intestinal nematode infection ameliorates experimental colitis in mice. Infection & Immunity 2002; 70: 5931–7CrossRefGoogle Scholar
  106. 106.
    Setiawan T, Metwali A, Blum AM et al. Heligmosomoides polygyrus promotes regulatory T cell cytokine production in normal distal murine intestine. Infect Immun 2007; 75: 4655–63PubMedCrossRefGoogle Scholar
  107. 107.
    Sutton TL, Zhao A, Madden KB et al. Anti-Inflammatory mechanisms of enteric Heligmosomoides polygyrus infection against trinitrobenzene sulfonic acid-induced colitis in a murine model. Infect Immun 2008; 76: 4772–82PubMedCrossRefGoogle Scholar
  108. 108.
    Elliott DE, Setiawan T, Metwali A et al. Heligmosomoides polygyrus inhibits established colitis in IL-10-deficient mice. Eur J Immunol 2004; 34: 2690–8PubMedCrossRefGoogle Scholar
  109. 109.
    Zaccone P, Fehervari Z, Jones FM et al. Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur J Immunol 2003; 33: 1439–49PubMedCrossRefGoogle Scholar
  110. 110.
    Saunders KA, Raine T, Cooke A et al. Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection. Infect Immun 2007; 75: 397–407PubMedCrossRefGoogle Scholar
  111. 111.
    Kitagaki K, Businga TR, Racila D et al. Intestinal helminths protect in a murine model of asthma. J Immunol 2006; 177: 1628–35PubMedGoogle Scholar
  112. 112.
    Wilson MS, Taylor MD, Balic A et al. Suppression of allergic airway inflammation by helminth-induced regulatory T cells. J Exp Med 2005; 202: 1199–212PubMedCrossRefGoogle Scholar
  113. 113.
    Mangan NE, van Rooijen N, McKenzie AN et al. Helminth-modified pulmonary immune response protects mice from allergen-induced airway hyperresponsiveness. J Immunol 2006; 176: 138–47PubMedGoogle Scholar
  114. 114.
    La Flamme AC, Ruddenklau K, Backstrom BT. Schistosomiasis decreases central nervous system inflammation and alters the progression of experimental autoimmune encephalomyelitis. Infection & Immunity 2003; 71: 4996–5004CrossRefGoogle Scholar
  115. 115.
    Sewell D, Qing Z, Reinke E et al. Immunomodulation of experimental autoimmune encephalomyelitis by helminth ova immunization. International Immunology 2003; 15: 59–69PubMedCrossRefGoogle Scholar
  116. 116.
    Nagayama Y, Watanabe K, Niwa M et al. Schistosoma mansoni and alpha-galactosyl-ceramide: prophylactic effect of Th1 Immune suppression in a mouse model of Graves’ hyperthyroidism. J Immunol 2004; 173: 2167–73PubMedGoogle Scholar
  117. 117.
    Mangan NE, Fallon RE, Smith P et al. Helminth infection protects mice from anaphylaxis via IL-10-producing B cells. J Immunol 2004; 173: 6346–56PubMedGoogle Scholar
  118. 118.
    Büning J, Homann N, von Smolinski D et al. Helminths as governors of inflammatory bowel disease. Gut 2008; 57: 1182–3PubMedCrossRefGoogle Scholar
  119. 119.
    Correale J, Farez M. Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol 2007; 61: 97–108PubMedCrossRefGoogle Scholar
  120. 120.
    Rodrigues LC, Newcombe PJ, Cunha SS et al. Early infection with Trichuris trichiura and allergen skin test reactivity in later childhood. Clin Exp Allergy 2008; 38: 1769–77PubMedGoogle Scholar
  121. 121.
    van den Biggelaar AH, Rodrigues LC, van Ree R et al. Long-term treatment of intestinal helminths increases mite skin-test reactivity in Gabonese schoolchildren. J Infect Dis 2004; 189: 892–900PubMedCrossRefGoogle Scholar
  122. 122.
    Elliott AM, Mpairwe H, Quigley MA et al. Helminth infection during pregnancy and development of infantile eczema. JAMA 2005; 294: 2032–4PubMedCrossRefGoogle Scholar
  123. 123.
    Hotez PJ, Brooker S, Bethony JM et al. Hookworm infection. N Engl J Med 2004; 351: 799–807PubMedCrossRefGoogle Scholar
  124. 124.
    Pritchard DI, Brown A. Is Necator americanus approaching a mutualistic symbiotic relationship with humans? Trends in Parasitology 2001; 17: 169–72PubMedCrossRefGoogle Scholar
  125. 125.
    Croese J, O’Neil J, Masson J et al. A proof of concept study establishing Necator americanus in Crohn’s patients and reservoir donors. Gut 2006; 55: 136–7PubMedCrossRefGoogle Scholar
  126. 126.
    Mortimer K, Brown A, Feary J et al. Dose-ranging study for trials of therapeutic infection with Necator americanus in humans. Am J Trop Med Hyg 2006; 75: 914–20PubMedGoogle Scholar
  127. 127.
    Beer RJ. The relationship between Trichuris trichiura (Linnaeus 1758) of man and Trichuris suis (Schrank 1788) of the pig. Research in Veterinary Science 1976; 20: 47–54PubMedGoogle Scholar
  128. 128.
    Summers RW, Elliott DE, Qadir K et al. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am J Gastroenterol 2003; 98: 2034–41PubMedCrossRefGoogle Scholar
  129. 129.
    Summers RW, Elliott DE, Urban JF Jr et al. Trichuris suis therapy in Crohn’s disease. Gut 2005; 54: 87–90PubMedCrossRefGoogle Scholar
  130. 130.
    Summers RW, Elliott DE, Urban JF Jr et al. Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 2005; 128: 825–32PubMedCrossRefGoogle Scholar
  131. 131.
    Elliott DE, Summers RW, Weinstock JV. Helminths and the modulation of mucosal inflammation. Current Opinion in Gastroenterology 2005; 21(1): 51–8PubMedGoogle Scholar
  132. 132.
    de Silva HJ, de Silva NR, de Silva AP et al. Emergence of inflammatory bowel disease ‘beyond the West’: do prosperity and improved hygiene have a role? Trans R Soc Trop Med Hyg 2008; 102: 857–60PubMedCrossRefGoogle Scholar
  133. 133.
    Malhotra I, Mungai P, Wamachi A et al. Helminth-and Bacillus Calmette-Guerin-induced immunity in children sensitized in utero to filariasis and schistosomiasis. J Immunol 1999; 162: 6843–8PubMedGoogle Scholar
  134. 134.
    Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007; 8: 253–62PubMedCrossRefGoogle Scholar
  135. 135.
    Chen CC, Louie S, McCormick B et al. Concurrent infection with an intestinal helminth parasite impairs host resistance to enteric Citrobacter rodentium and enhances Citrobacter-induced colitis in mice. Infect Immun 2005; 73: 5468–81PubMedCrossRefGoogle Scholar
  136. 136.
    Chen CC, Louie S, McCornick BA et al. Helminth-primed dendritic cells alter the host response to enteric bacterial infection. J Immunol 2006; 176: 472–83PubMedGoogle Scholar
  137. 137.
    Erb KJ, Trujillo C, Fugate M et al. Infection with the helminth Nippostrongylus brasiliensis does not interfere with efficient elimination of Mycobacterium bovis BCG from the lungs of mice. Clin Diagn Lab Immunol 2002; 9: 727–30PubMedGoogle Scholar
  138. 138.
    Karp CL, Auwaerter PG. Coinfection with HIV and tropical infectious diseases. II. Helminthic, fungal, bacterial, and viral pathogens. Clin Infect Dis 2007; 45: 1214–20PubMedCrossRefGoogle Scholar
  139. 139.
    Hunter MM, Wang A, McKay DM. Helminth infection enhances disease in a murine TH2 model of colitis. Gastroenterology 2007; 132: 1320–30PubMedCrossRefGoogle Scholar
  140. 140.
    Reyes JL, Terrazas LI. The divergent roles of alternatively activated macrophages in helminthic infections. Parasite Immunol 2007; 29: 609–19PubMedCrossRefGoogle Scholar
  141. 141.
    Morrison AC, Correll PH. Activation of the stem cell-derived tyrosine kinase/RON receptor tyrosine kinase by macrophage-stimulating protein results in the induction of arginase activity in murine peritoneal macrophages. J Immunol 2002; 168: 853–60PubMedGoogle Scholar
  142. 142.
    Rousseaux C, Lefebvre B, Dubuquoy L et al. Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. J Exp Med 2005; 201: 1205–15PubMedCrossRefGoogle Scholar
  143. 143.
    Katz JA. Treatment of inflammatory bowel disease with corticosteroids. Gastroenterol Clin North Am 2004; 33: 171–89, viiPubMedCrossRefGoogle Scholar
  144. 144.
    Karran P, Attard N. Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer 2008; 8: 24–36PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • David E. Elliott
    • 1
    • 2
  • Joel V. Weinstock
    • 3
  1. 1.Division of Gastroenterology and Hepatology, Department of Internal MedicineUniversity of Iowa, Roy J. and Lucille A. Carver College of MedicineIowa CityUSA
  2. 2.VAMCIowa CityUSA
  3. 3.Division of Gastroenterology and Hepatology, Department of Internal MedicineTufts Medical CenterBostonUSA

Personalised recommendations