Is there room for Darwinian medicine and the hygiene hypothesis in Alzheimer pathogenesis?

  • W. Sue T. Griffin
  • Robert E. Mrak
Part of the Progress in Inflammation Research book series (PIR)


Improvements in modern hygiene and public health have resulted in decreased human contact with organisms associated with so-called ‘dirtier’ environs. These changes, in turn have led to an appreciation of the potential importance of such ‘friendly’ organisms toward proper development of the human immune system. Based on this, a novel hypothesis (the hygiene hypothesis) has been formulated. This idea suggests that a paucity of exposure to environmental pathogens retards proper immune system development, and consequently decreases its ability to effectively thwart a variety of effectors with degenerative consequences, such as those associated with chronic inflammatory responses in diseases as seemingly diverse as those of the gut and the brain. In this chapter, we review current information, including the potential contribution of inheritance to development of hypotheses regarding the pathogenesis of chronic neurodegenerative diseases, especially Alzheimer’s disease. We further explore ways in which the hygiene hypothesis and ideas in Darwinian medicine may play a role in the neuropathogenesis of these diseases.


Alzheimer Disease Cerebral Amyloid Angiopathy Alzheimer Pathogenesis Neuropathological Change Lewy Body Dementia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haraguchi T, Terada S, Ishizu H, Sakai K, Tanabe Y, Nagai T, Takata H, Nobukuni K, Ihara Y, Kitamoto T et al (2008) Coexistence of Creutzfeldt-Jakob disease, Lewy body disease, and Alzheimer’s disease pathology: An autopsy case showing typical clinical features of Creutzfeldt-Jakob disease. Neuropathology, Epub ahead of printGoogle Scholar
  2. 2.
    Tashiro M, Kojima M, Kihara H, Kasai K, Kamiyoshihara T, Ueda K, Shimotakahara S (2008) Characterization of fibrillation process of alpha-synuclein at the initial stage. Biochem Biophys Res Commun 369: 910–914PubMedCrossRefGoogle Scholar
  3. 3.
    Ikeda K, Ikeda S, Yoshimura T, Kato H, Namba M (1978) Idiopathic Parkinsonism with Lewy-type inclusions in cerebral cortex. A case report. Acta Neuropathol 41: 165–168PubMedCrossRefGoogle Scholar
  4. 4.
    Farlow MR, Cummings J (2008) A modern hypothesis: The distinct pathologies of dementia associated with Parkinson’s disease versus Alzheimer’s disease. Dement Geriatr Cogn Disord 25: 301–308PubMedCrossRefGoogle Scholar
  5. 5.
    Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K, Wallace MR, Sakaguchi AY et al (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306: 234–238PubMedCrossRefGoogle Scholar
  6. 6.
    Rubinsztein DC, Barton DE, Davison BC, Ferguson-Smith MA (1993) Analysis of the huntingtin gene reveals a trinucleotide-length polymorphism in the region of the gene that contains two CCG-rich stretches and a correlation between decreased age of onset of Hungtington’s disease and CAG repeat number. Hum Mol Genet 2: 1713–1715PubMedCrossRefGoogle Scholar
  7. 7.
    Norremolle A, Riess O, Epplen JT, Fenger K, Hasholt L, Sorensen SA (1993) Trinucleotide repeat elongation in the Huntingtin gene in Huntington disease patients from 71 Danish families. Hum Mol Genet 2: 1475–1476PubMedCrossRefGoogle Scholar
  8. 8.
    Forno LS (1992) Neuropathologic features of Parkinson’s, Huntington’s and Alzheimer’s diseases. Ann NY Acad Sci 648: 6–16PubMedCrossRefGoogle Scholar
  9. 9.
    Singhrao SK, Thomas P, Wood JD, MacMillan JC, Neal JW, Harper PS, Jones AL (1998) Huntingtin protein colocalizes with lesions of neurodegenerative diseases: An investigation in Huntington’s, Alzheimer’s, and Pick’s diseases. Exp Neurol 150: 213–222PubMedCrossRefGoogle Scholar
  10. 10.
    Heiser V, Scherzinger E, Boeddrich A, Nordhoff E, Lurz R, Schugardt N, Lehrach H, Wanker EE (2000) Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington’s disease therapy. Proc Natl Acad Sci USA 97: 6739–6744PubMedCrossRefGoogle Scholar
  11. 11.
    Zilka N, Kontsekova E, Novak M (2008) Chaperone-like antibodies targeting misfolded tau protein: new vistas in the immunotherapy of neurodegenerative foldopathies. Alzheimers Dis 15: 169–179Google Scholar
  12. 12.
    DeArmond SJ (2004) Discovering the mechanisms of neurodegeneration in prion diseases. Neurochem Res 29:1979–1998PubMedCrossRefGoogle Scholar
  13. 13.
    Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24: 1121–1159PubMedCrossRefGoogle Scholar
  14. 14.
    Clarimon J, Molina-Porcel L, Gomez-Isla T, Blesa R, Guardia-Laguarta C, Gonzalez-Neira A, Estorch M, Ma Grau J, Barraquer L, Roig C et al (2009) Early-onset familial lewy body dementia with extensive tauopathy: a clinical, genetic, and neuropathological study. J Neuropathol Exp Neurol 68: 73–82PubMedCrossRefGoogle Scholar
  15. 15.
    Nelson PT, Braak H, Markesbery WR (2009) Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J Neuropathol Exp Neurol 68: 1–14PubMedCrossRefGoogle Scholar
  16. 16.
    Braak H, Braak E (1991) Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol 1: 213–216PubMedCrossRefGoogle Scholar
  17. 17.
    Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR (1995) An English translation of Alzheimer’s 1907 paper, “Über eine eigenartige Erkankung der Hirnrinde”. Clin Anat 8: 429–431PubMedCrossRefGoogle Scholar
  18. 18.
    Garcia-Marin V, Garcia-Lopez P, Freire M (2007) Cajal’s contributions to the study of Alzheimer’s disease. J Alzheimers Dis 12: 161–174PubMedGoogle Scholar
  19. 19.
    Ramon y Cajal S (1984) Degeneration and Regeneration of the Nervous System. Robert Maclehose and Co, University Press, GlasgowGoogle Scholar
  20. 20.
    Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120: 885–890PubMedCrossRefGoogle Scholar
  21. 21.
    Glenner GG, Wong CW, Quaranta V, Eanes ED (1984) The amyloid deposits in Alzheimer’s disease: their nature and pathogenesis. Appl Pathol 2: 357–369PubMedGoogle Scholar
  22. 22.
    St George-Hyslop PH, Tanzi RE, Polinsky RJ, Haines JL, Nee L, Watkins PC, Myers RH, Feldman RG, Pollen D Drachman D et al (1987) The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 235: 885–890PubMedCrossRefGoogle Scholar
  23. 23.
    Patterson D, Gardiner K, Kao FT, Tanzi R, Watkins P, Gusella JF (1988) Mapping of the gene encoding the beta-amyloid precursor protein and its relationship to the Down syndrome region of chromosome 21. Proc Natl Acad Sci USA 85: 8266–8270PubMedCrossRefGoogle Scholar
  24. 24.
    Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St George-Hyslop P, Van Keuren ML, Patterson D, Pagan S, Kurnit DM, Neve RL (1987) Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235: 880–884PubMedCrossRefGoogle Scholar
  25. 25.
    Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gajdusek DC (1987) Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science 235: 877–880PubMedCrossRefGoogle Scholar
  26. 26.
    Robakis NK, Ramakrishna N, Wolfe G, Wisniewski HM (1987) Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides. Proc Natl Acad Sci USA 84: 4190–4194PubMedCrossRefGoogle Scholar
  27. 27.
    Wisniewski KE, Dalton AJ, McLachlan C, Wen GY, Wisniewski HM (1985) Alzheimer’s disease in Down’s syndrome: clinicopathologic studies. Neurology 35: 957–961PubMedGoogle Scholar
  28. 28.
    Sachatello CR, Bivins PA, Daugherty ME, Griffin WO, Jr (1980) Diagnostic peritoneal lavage: a ten-year overview. J Ky Med Assoc 78: 418–422PubMedGoogle Scholar
  29. 29.
    Sleegers K, Brouwers N, Gijselinck I, Theuns J, Goossens D, Wauters J, Del-Favero J, Cruts M, van Duijn CM, Van Broeckhoven C (2006) APP duplication is sufficient to cause early onset Alzheimer’s dementia with cerebral amyloid angiopathy. Brain 129: 2977–2983PubMedCrossRefGoogle Scholar
  30. 30.
    Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M et al (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38: 24–26PubMedCrossRefGoogle Scholar
  31. 31.
    Hanger DP, Mann DM, Neary D, Anderton BH (1992) Tau pathology in a case of familial Alzheimer’s disease with a valine to glycine mutation at position 717 in the amyloid precursor protein. Neurosci Lett 145: 178–180PubMedCrossRefGoogle Scholar
  32. 32.
    Goate A, Chartier-Harlin MC, Mullan M, Brown, J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349: 704–706PubMedCrossRefGoogle Scholar
  33. 33.
    Korczyn AD (2008) The amyloid cascade hypothesis. Alzheimers Dement 4: 176–178PubMedCrossRefGoogle Scholar
  34. 34.
    Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K et al (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6: 916–919PubMedCrossRefGoogle Scholar
  35. 35.
    Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400: 173–177PubMedCrossRefGoogle Scholar
  36. 36.
    Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D et al (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408: 982–985PubMedCrossRefGoogle Scholar
  37. 37.
    Schenk D, Seubert P, Ciccarelli RB (2001) Immunotherapy with beta-amyloid for Alzheimer’s disease: a new frontier. DNA Cell Biol 20: 679–681PubMedCrossRefGoogle Scholar
  38. 38.
    Masliah E, Hansen L, Adame A, Crews L, Bard F, Lee C, Seubert P, Games D, Kirby L, Schenk D (2005) Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64: 129–131PubMedGoogle Scholar
  39. 39.
    Boche D, Nicoll, JA (2008) The role of the immune system in clearance of Abeta from the brain. Brain Pathol 18: 267–278PubMedCrossRefGoogle Scholar
  40. 40.
    Holmes C, Boche, D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW et al (2008) Long-term effects of Abeta 42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372: 216–223PubMedCrossRefGoogle Scholar
  41. 41.
    Nicoll JA, Barton E, Boche D, Neal JW, Ferrer I, Thompson P, Vlachouli C, Wilkinson D, Bayer A, Games D et al (2006) Abeta species removal after abeta 42 immunization. J Neuropathol Exp Neurol 65: 1040–1048PubMedCrossRefGoogle Scholar
  42. 42.
    Davis DG, Schmitt FA, Wekstein DR, Markesbery WR (1999) Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 58: 376–388PubMedCrossRefGoogle Scholar
  43. 43.
    (2001) Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS) Lancet 357: 169–175Google Scholar
  44. 44.
    Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, Wall A, Ringheim A, Langstrom B, Nordberg A (2006) Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 129: 2856–2866PubMedCrossRefGoogle Scholar
  45. 45.
    Head E, Pop V, Vasilevko V, Hill M, Saing T, Sarsoza F, Nistor M, Christie LA, Milton S, Glabe C et al (2008) A two-year study with fibrillar beta-amyloid (Abeta) immunization in aged canines: effects on cognitive function and brain Abeta. J Neurosci 28: 3555–3566PubMedCrossRefGoogle Scholar
  46. 46.
    Morgan D, Landreth G, Bickford P (2008) The Promise and Perils of an Alzheimer Disease Vaccine: A Video Debate. J Neuroimmune Pharmacol 4: 1–3CrossRefGoogle Scholar
  47. 47.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82: 239–259CrossRefGoogle Scholar
  48. 48.
    Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16: 271–278; discussion 278–284PubMedCrossRefGoogle Scholar
  49. 49.
    Cuchillo-Ibanez I, Seereeram A, Byers HL, Leung KY, Ward MA, Anderton BH, Hanger DP (2008) Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin. Faseb J 22: 3186–3195PubMedCrossRefGoogle Scholar
  50. 50.
    Trinczek B, Ebneth A, Mandelkow EM, Mandelkow E (1999) Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J Cell Sci 112(Pt 14): 2355–2367PubMedGoogle Scholar
  51. 51.
    Vershinin M, Carter BC, Razafsky DS, King SJ, Gross SP (2007) Multiple-motor based transport and its regulation by Tau. Proc Natl Acad Sci USA 104: 87–92PubMedCrossRefGoogle Scholar
  52. 52.
    Ueda K, Masliah E, Saitoh T, Bakalis SL, Scoble H, Kosik KS (1990) Alz-50 recognizes a phosphorylated epitope of tau protein. J Neurosci 10: 3295–3304PubMedGoogle Scholar
  53. 53.
    Kosik KS (1990) Tau protein and neurodegeneration. Mol Neurobiol 4: 171–179PubMedCrossRefGoogle Scholar
  54. 54.
    Kosik KS (1993) The molecular and cellular biology of tau. Brain Pathol 3: 39–43PubMedCrossRefGoogle Scholar
  55. 55.
    Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83: 4913–4917PubMedCrossRefGoogle Scholar
  56. 56.
    Dayanandan R, Van Slegtenhorst M, Mack TG, Ko L, Yen SH, Leroy K, Brion JP, Anderton BH, Hutton M, Lovestone S (1999) Mutations in tau reduce its microtubule binding properties in intact cells and affect its phosphorylation. FEBS Lett 446: 228–232PubMedCrossRefGoogle Scholar
  57. 57.
    Kosik KS, Shimura H (2005) Phosphorylated tau and the neurodegenerative foldopathies. Biochim Biophys Acta 1739: 298–310PubMedGoogle Scholar
  58. 58.
    Trojanowski JQ, Lee VM (1995) Phosphorylation of paired helical filament tau in Alzheimer’s disease neurofibrillary lesions: focusing on phosphatases. Faseb J 9: 1570–1576PubMedGoogle Scholar
  59. 59.
    Griffin WS, Ling C, White CL, 3rd, Morrison-Bogorad M (1990) Polyadenylated messenger RNA in paired helical filament-immunoreactive neurons in Alzheimer disease. Alzheimer Dis Assoc Disord. 4: 69–78PubMedGoogle Scholar
  60. 60.
    Schmechel DE, Goldgaber D, Burkhart DS, Gilbert JR, Gajdusek DC, Roses AD (1988) Cellular localization of messenger RNA encoding amyloid-beta-protein in normal tissue and in Alzheimer disease. Alzheimer Dis Assoc Disord 2: 96–111PubMedCrossRefGoogle Scholar
  61. 61.
    Huang HC, Jiang ZF (2009) Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J Alzheimers Dis 16: 15–27PubMedGoogle Scholar
  62. 62.
    Greenberg SM, Koo EH, Selkoe DJ, Qiu WQ, Kosik KS (1994) Secreted beta-amyloid precursor protein stimulates mitogen-activated protein kinase and enhances tau phosphorylation. Proc Natl Acad Sci USA 91: 7104–7108PubMedCrossRefGoogle Scholar
  63. 63.
    Greenberg SM, Rebeck GW, Vonsattel JP, Gomez-Isla T, Hyman BT (1995) Apolipo-protein E epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy. Ann Neurol 38: 254–259PubMedCrossRefGoogle Scholar
  64. 64.
    Callahan LM, Coleman PD (1995) Neurons bearing neurofibrillary tangles are responsible for selected synaptic deficits in Alzheimer’s disease. Neurobiol Aging 16: 311–314PubMedCrossRefGoogle Scholar
  65. 65.
    Callahan LM, Vaules WA, Coleman PD (2002) Progressive reduction of synaptophysin message in single neurons in Alzheimer disease. J Neuropathol Exp Neurol 61: 384–395PubMedGoogle Scholar
  66. 66.
    Coleman PD, Flood DG (1987) Neuron numbers and dendritic extent innormal aging and Alzheimer’s disease. Neurobiol Aging 8: 521–545PubMedCrossRefGoogle Scholar
  67. 67.
    Barger SW, Harmon AD (1997) Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 388: 878–881PubMedCrossRefGoogle Scholar
  68. 68.
    Li Y, Liu L, Barger SW, Griffin WS (2003) Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci 23: 1605–1611PubMedGoogle Scholar
  69. 69.
    Sheng JG, Jones RA, Zhou XQ, McGinness JM, Van Eldik LJ, Mrak RE, Griffin WS (2001) Interleukin-1 promotion of MAPK-p38 overexpression in experimental animals and in Alzheimer’s disease: potential significance for tau protein phosphorylation. Neurochem Int 39: 341–348PubMedCrossRefGoogle Scholar
  70. 70.
    Sheng JG, Zhu SG, Jones RA, Griffin WS, Mrak RE (2000) Interleukin-1 promotes expression and phosphorylation of neurofilament and tau proteins in vivo. Exp Neurol 163: 388–391PubMedCrossRefGoogle Scholar
  71. 71.
    Sheng JG, Mrak RE, Griffin WS (1997) Glial-neuronal interactions in Alzheimer disease: progressive association of IL-1alpha+ microglia and S100beta+ astrocytes with neurofibrillary tangle stages. J Neuropathol Exp Neurol 56: 285–290PubMedCrossRefGoogle Scholar
  72. 72.
    Hutton M, Lendon CL, Rizzu P, Baker M, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A et al (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393: 702–705PubMedCrossRefGoogle Scholar
  73. 73.
    Spillantini MG, Crowther RA, Kamphorst W, Heutink P, van Swieten JC (1998) Tau pathology in two Dutch families with mutations in the microtubule-binding region of tau. Am J Pathol 153: 1359–1363PubMedGoogle Scholar
  74. 74.
    Foster NL, Wilhelmsen K, Sima AA, Jones MZ, D’Amato CJ, Gilman S (1997) Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants. Ann Neurol 41: 706–715PubMedCrossRefGoogle Scholar
  75. 75.
    Lantos PL, Luthert PJ, Hanger D, Anderton BH, Mullan M, Rossor M (1992) Familial Alzheimer’s disease with the amyloid precursor protein position 717 mutation and sporadic Alzheimer’s disease have the same cytoskeletal pathology. Neurosci Lett 137: 221–224PubMedCrossRefGoogle Scholar
  76. 76.
    Ostojic J, Elfgren C, Passant U, Nilsson K, Gustafson L, Lannfelt L, Froelich Fabre S (2004) The tau R406W mutation causes progressive presenile dementia with bitemporal atrophy. Dement Geriatr Cogn Disord 17: 298–301PubMedCrossRefGoogle Scholar
  77. 77.
    Morsch R, Simon W, Coleman PD (1999) Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 58: 188–197PubMedCrossRefGoogle Scholar
  78. 78.
    Sigurdsson EM (2008) Immunotherapy targeting pathological tau protein in Alzheimer’s disease and related tauopathies. J Alzheimers Dis 15: 157–168PubMedGoogle Scholar
  79. 79.
    Gozes I, Divinski I, Piltzer I (2008) NAP and D-SAL: neuroprotection against the beta amyloid peptide (1–42). BMC Neurosci 9 (Suppl 3): S3CrossRefGoogle Scholar
  80. 80.
    Matsuoka Y, Jouroukhin Y, Gray AJ, Ma L, Hirata-Fukae C, Li HF, Feng L, Lecanu L, Walker BR, Planel E et al (2008) A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer’s disease. J Pharmacol Exp Ther 325: 146–153PubMedCrossRefGoogle Scholar
  81. 81.
    Gozes I, Bassan M, Zamostiano R, Pinhasov A, Davidson A, Giladi E, Perl O, Glazner GW, Brenneman DE (1999) A novel signaling molecule for neuropeptide action: activity-dependent neuroprotective protein. Ann NY Acad Sci 897: 125–135PubMedCrossRefGoogle Scholar
  82. 82.
    Barger SW, DeWall KM, Liu L, Mrak RE, Griffin WS (2008) Relationships between expression of apolipoprotein E and β-amyloid precursor protein are altered in proximity to Alzheimer β-amyloid plaques; potential explanations from cell culture studies. J Neuropathol Exp Neurol 67: 773–783PubMedCrossRefGoogle Scholar
  83. 83.
    Nicoll JA, Mrak RE, Graham DI, Stewart J, Wilcock G, MacGowan S, Esiri MM, Murray LS, Dewar D, Love S et al (2000) Association of interleukin-1 gene polymorphisms with Alzheimer’s disease. Ann Neurol 47: 365–368PubMedCrossRefGoogle Scholar
  84. 84.
    Rebeck GW (2000) Confirmation of the genetic association of interleukin-1A with early onset sporadic Alzheimer’s disease. Neurosci Lett 293: 75–77PubMedCrossRefGoogle Scholar
  85. 85.
    Grimaldi LM, Casadei VM, Ferri C, Veglia F, Licastro F, Annoni G, Biunno I, De Bellis G, Sorbi S, Mariani C et al (2000) Association of early-onset Alzheimer’s disease with an interleukin-1alpha gene polymorphism. Ann Neurol 47: 361–365PubMedCrossRefGoogle Scholar
  86. 86.
    Rainero I, Bo M, Ferrero M, Valfre W, Vaula G, Pinessi L (2004) Association between the interleukin-1alpha gene and Alzheimer’s disease: a meta-analysis. Neurobiol Aging 25: 1293–1298PubMedCrossRefGoogle Scholar
  87. 87.
    Combarros O, Llorca J, Sanchez-Guerra M, Infante J, Berciano J (2003) Age-dependent association between interleukin-1A (-889) genetic polymorphism and sporadic Alzheimer’s disease. A meta-analysis. J Neurol 250: 987–989PubMedCrossRefGoogle Scholar
  88. 88.
    Culpan D, MacGowan SH, Ford JM, Nicoll JA, Griffin WS, Dewar D, Cairns NJ, Hughes A, Kehoe PG, Wilcock GK (2003) Tumour necrosis factor-alpha gene polymorphisms and Alzheimer’s disease. Neurosci Lett 350: 61–65PubMedCrossRefGoogle Scholar
  89. 89.
    Stanley LC, Mrak RE, Woody RC, Perrot LJ, Zhang S, Marshak DR, Nelson SJ, Griffin WS (1994) Glial cytokines as neuropathogenic factors in HIV infection: pathogenic similarities to Alzheimer’s disease. J Neuropathol Exp Neurol 53: 231–238PubMedCrossRefGoogle Scholar
  90. 90.
    Sheng JG, Boop FA, Mrak RE, Griffin WS (1994) Increased neuronal beta-amyloid precursor protein expression in human temporal lobe epilepsy: association with interleukin-1 alpha immunoreactivity. J Neurochem 63: 1872–1879PubMedGoogle Scholar
  91. 91.
    Griffin WS, Cheng JG, Gentleman SM, Graham DI, Mrak RE, Roberts GW (1994) Microglial interleukin-1 alpha expression in human head injury: correlations with neuronal and neuritic beta-amyloid precursor protein expression. Neurosci Lett 176: 133–136PubMedCrossRefGoogle Scholar
  92. 92.
    Sparks DL, Hunsaker JC, 3rd, Scheff SW, Kryscio RJ, Henson JL, Markesbery WR (1990) Cortical senile plaques in coronary artery disease, aging and Alzheimer’s disease. Neurobiol Aging 11: 601–607PubMedCrossRefGoogle Scholar
  93. 93.
    Griffith HR, Martin RC, Bambara JK, Marson DC, Faught E (2006) Older adults with epilepsy demonstrate cognitive impairments compared with patients with amnestic mild cognitive impairment. Epilepsy Behav 8: 161–168PubMedCrossRefGoogle Scholar
  94. 94.
    Breteler MM, van Duijn CM, Chandra V, Fratiglioni L, Graves AB, Heyman A, Jorm AF, Kokmen E, Kondo K, Mortimer JA et al (1991) Medical history and the risk of Alzheimer’s disease: a collaborative re-analysis of case-control studies. EURODEM Risk Factors Research Group. Int J Epidemiol 20 (Suppl 2): S36–42Google Scholar
  95. 95.
    Griffin WS, Yeralan O, Sheng JG, Boop FA, Mrak RE, Rovnaghi CR, Burnett BA, Feok-Feoktistova A, Van Eldik LJ (1995) Overexpression of the neurotrophic cytokine S100 beta in human temporal lobe epilepsy. J Neurochem 65: 228–233PubMedCrossRefGoogle Scholar
  96. 96.
    Esiri MM, Biddolph SC, Morris CS (1998) Prevalence of Alzheimer plaques in AIDS. J Neurol Neurosurg Psychiatry 65: 29–33PubMedCrossRefGoogle Scholar
  97. 97.
    Kusdra L, Rempel H, Yaffe K, Pulliam L (2000) Elevation of CD69+ monocyte/macrophages in patients with Alzheimer’s disease. Immunobiology 202: 26–33PubMedGoogle Scholar
  98. 98.
    Rempel HC, Pulliam L (2005) HIV-1 Tat inhibits neprilysin and elevates amyloid beta. AIDS 19: 127–135PubMedCrossRefGoogle Scholar
  99. 99.
    Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL, 3rd, Araoz C (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 86: 7611–7615PubMedCrossRefGoogle Scholar
  100. 100.
    McKenzie JE, Gentleman SM, Roberts GW, Graham DI, Royston MC (1994) Increased numbers of beta APP-immunoreactive neurones in the entorhinal cortex after head injury. Neuroreport 6: 161–164PubMedCrossRefGoogle Scholar
  101. 101.
    Mattson MP, Scheff SW (1994) Endogenous neuroprotection factors and traumatic brain injury: mechanisms of action and implications for therapy. J Neurotrauma 11: 3–33PubMedCrossRefGoogle Scholar
  102. 102.
    Sola C, Garcia-Ladona FJ, Mengod G, Probst A, Frey P, Palacios JM (1993) Increased levels of the Kunitz protease inhibitor-containing beta APP mRNAs in rat brain following neurotoxic damage. Brain Res Mol Brain Res 17: 41–52PubMedCrossRefGoogle Scholar
  103. 103.
    Barger SW, Basile AS (2001) Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function. J Neurochem 76: 846–854PubMedCrossRefGoogle Scholar
  104. 104.
    Mrak RE, Griffin WS (2007) Common inflammatory mechanisms in Lewy body disease and Alzheimer disease. J Neuropathol Exp Neurol 66: 683–686PubMedCrossRefGoogle Scholar
  105. 105.
    Griffin WS (2006) Inflammation and neurodegenerative diseases. Am J Clin Nutr 83: 470S–474SPubMedGoogle Scholar
  106. 106.
    da Cunha A, Jefferson JJ, Tyor WR, Glass JD, Jannotta FS, Vitkovic L (1993) Gliosis in human brain: relationship to size but not other properties of astrocytes. Brain Res 600: 161–165PubMedCrossRefGoogle Scholar
  107. 107.
    Sheng JG, Mrak RE, Griffin WS (1998) Enlarged and phagocytic, but not primed, interleukin-1 alpha-immunoreactive microglia increase with age in normal human brain. Acta Neuropathol (Berl) 95: 229–234CrossRefGoogle Scholar
  108. 108.
    Marshak DR (1990) S100 beta as a neurotrophic factor. Prog Brain Res 86: 169–181PubMedCrossRefGoogle Scholar
  109. 109.
    Lewis D, Teyler TJ (1986) Anti-S-100 serum blocks long-term potentiation in the hippocampal slice. Brain Res 383: 159–164PubMedCrossRefGoogle Scholar
  110. 110.
    Goldgaber D, Harris HW, Hla T, Maciag T, Donnelly RJ, Jacobsen JS, Vitek MP, Gajdusek DC (1989) Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells. Proc Natl Acad Sci USA 86: 7606–7610PubMedCrossRefGoogle Scholar
  111. 111.
    Buxbaum JD, Oishi M, Chen HI, Pinkas-Kramarski R, Jaffe EA, Gandy SE, Greengard P (1992) Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor. Proc Natl Acad Sci USA 89: 10075–10078PubMedCrossRefGoogle Scholar
  112. 112.
    Mattson MP (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 77: 1081–1132PubMedGoogle Scholar
  113. 113.
    Mrak RE, Griffin WS (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26: 349–354PubMedCrossRefGoogle Scholar
  114. 114.
    Griffin WS, Liu L, Li Y, Mrak RE, Barger SW (2006) Interleukin-1 mediates Alzheimer and Lewy body pathologies. J Neuroinflammation 3: 5PubMedCrossRefGoogle Scholar
  115. 115.
    Li Y, Liu L, Kang J, Sheng JG, Barger SW, Mrak RE, Griffin WS (2000) Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. J Neurosci 20: 149–155PubMedGoogle Scholar
  116. 116.
    Mrak RE, Griffin WS (2001) Interleukin-1, neuroinflammation, and Alzheimer’s disease. Neurobiol Aging 22: 903–908PubMedCrossRefGoogle Scholar
  117. 117.
    Teyler TJ, Discenna P (1984) Long-term potentiation as a candidate mnemonic device. Brain Res 319: 15–28PubMedGoogle Scholar
  118. 118.
    Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25: 3219–3228PubMedCrossRefGoogle Scholar
  119. 119.
    Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature 440: 1054–1059PubMedCrossRefGoogle Scholar
  120. 120.
    Lai AY, Swayze RD, El-Husseini A, Song C (2006) Interleukin-1 beta modulates AMPA receptor expression and phosphorylation in hippocampal neurons. J Neuroimmunol 175: 97–106PubMedCrossRefGoogle Scholar
  121. 121.
    Jang HJ, Cho KH, Kim HS, Hahn SJ, Kim MS, Rhie DJ (2009) Age-dependent decline in supragranular long-term synaptic plasticity by increased inhibition during the critical period in the rat primary visual cortex. J Neurophysiol 101: 269–275PubMedCrossRefGoogle Scholar
  122. 122.
    Schmid AW, Lynch MA, Herron CE (2008) The effects of IL-1 receptor antagonist on beta amyloid mediated depression of LTP in the rat CA1 in vivo. Hippocampus, Epub ahead of printGoogle Scholar
  123. 123.
    Giunta B, Fernandez F, Nikolic WV, Obregon D, Rrapo E, Town T, Tan J (2008) Inflammaging as a prodrome to Alzheimer’s disease. J Neuroinflammation 5: 51PubMedCrossRefGoogle Scholar
  124. 124.
    Sheng JG, Griffin WS, Royston MC, Mrak RE (1998) Distribution of interleukin-1-immunoreactive microglia in cerebral cortical layers: implications for neuritic plaque formation in Alzheimer’s disease. Neuropathol Appl Neurobiol 24: 278–283PubMedCrossRefGoogle Scholar
  125. 125.
    Gentleman SM, Leclercq PD, Moyes L, Graham DI, Smith C, Griffin WS, Nicoll JA (2004) Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci Int 146: 97–104PubMedCrossRefGoogle Scholar
  126. 126.
    Wainwright MS, Craft JM, Griffin WS, Marks A, Pineda J, Padgett KR, Van Eldik LJ (2004) Increased susceptibility of S100B transgenic mice to perinatal hypoxia-ischemia. Ann Neurol 56: 61–67PubMedCrossRefGoogle Scholar
  127. 127.
    Mori T, Tan J, Arendash GW, Koyama N, Nojima Y, Town T (2008) Overexpression of human S100B exacerbates brain damage and periinfarct gliosis after permanent focal ischemia. Stroke 39: 2114–2121PubMedCrossRefGoogle Scholar
  128. 128.
    Griffin WS, Mrak RE (2002) Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. J Leukoc Biol 72: 233–238PubMedGoogle Scholar
  129. 129.
    Breitner JC, Gau BA, Welsh KA, Plassman BL, McDonald WM, Helms MJ, Anthony JC (1994) Inverse association of anti-inflammatory treatments and Alzheimer’s disease: initial results of a co-twin control study. Neurology 44: 227–232PubMedGoogle Scholar
  130. 130.
    Breitner JC, Welsh KA, Helms MJ, Gaskell PC, Gau BA, Roses AD, Pericak-Vance MA, Saunders AM (1995) Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol Aging 16: 523–530PubMedCrossRefGoogle Scholar
  131. 131.
    Breitner JC, Zandi PP (2001) Do nonsteroidal antiinflammatory drugs reduce the risk of Alzheimer’s disease? N Engl J Med 345: 1567–1568PubMedCrossRefGoogle Scholar
  132. 132.
    Zandi PP, Anthony JC, Hayden KM, Mehta K, Mayer L, Breitner JC (2002) Reduced incidence of AD with NSAID but not H2 receptor antagonists: the Cache County Study. Neurology 59: 880–886PubMedGoogle Scholar
  133. 133.
    Aisen PS (2008) The inflammatory hypothesis of Alzheimer disease: dead or alive? Alzheimer Dis Assoc Disord 22: 4–5PubMedCrossRefGoogle Scholar
  134. 134.
    McGeer PL, Rogers J (1992) Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology 42: 447–449PubMedGoogle Scholar
  135. 135.
    Vlad SC, Miller DR, Kowall NW, Felson DT (2008) Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 70: 1672–1677PubMedCrossRefGoogle Scholar
  136. 136.
    Szekely CA, Breitner JC, Fitzpatrick AL, Rea TD, Psaty BM, Kuller LH, Zandi PP (2008) NSAID use and dementia risk in the Cardiovascular Health Study: role of APOE and NSAID type. Neurology 70: 17–24PubMedCrossRefGoogle Scholar
  137. 137.
    in t’Veld BA, Ruitenberg A, Hofman A, Launer LJ, van Duijn CM, Stijnen T, Breteler MM, Stricker BH (2001) Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 345: 1515–1521CrossRefGoogle Scholar
  138. 138.
    Trouche SG, Asuni A, Rouland S, Wisniewski T, Frangione B, Verdier JM, Sigurdsson EM, Mestre-Frances N (2009) Antibody response and plasma Abeta1–40 levels in young Microcebus murinus primates immunized with Abeta 1–42 and its derivatives. Vaccine 27: 957–964PubMedCrossRefGoogle Scholar
  139. 139.
    Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM (2007) Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 27: 9115–9129PubMedCrossRefGoogle Scholar
  140. 140.
    Lemere CA, Maron R, Selkoe DJ, Weiner HL (2001) Nasal vaccination with beta-amyloid peptide for the treatment of Alzheimer’s disease. DNA Cell Biol 20: 705–711PubMedCrossRefGoogle Scholar
  141. 141.
    Wilcock DM, Jantzen PT, Li Q, Morgan D, Gordon MN (2007) Amyloid-beta vaccination, but not nitro-nonsteroidal anti-inflammatory drug treatment, increases vascular amyloid and microhemorrhage while both reduce parenchymal amyloid. Neuroscience 144: 950–960PubMedCrossRefGoogle Scholar
  142. 142.
    Morihara T, Teter B, Yang F, Lim GP, Boudinot S, Boudinot FD, Frautschy SA, Cole GM (2005) Ibuprofen suppresses interleukin-1 beta induction of pro-amyloidogenic alpha 1-antichymotrypsin to ameliorate beta-amyloid (Abeta) pathology in Alzheimer’s models. Neuropsychopharmacology 30: 1111–1120PubMedCrossRefGoogle Scholar
  143. 143.
    Morgan D (2006) Modulation of microglial activation state following passive immunization in amyloid depositing transgenic mice. Neurochem Int 49: 190–194PubMedCrossRefGoogle Scholar
  144. 144.
    May R (1984) Degeneration and Regeneration of the Nervous System. Robert Maclehose and Co, University Press, GlasgowGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • W. Sue T. Griffin
    • 1
    • 2
    • 3
  • Robert E. Mrak
    • 4
  1. 1.Donald W. Reynolds Institute on Aging and Department of GeriatricsUniversity of Arkansas for Medical SciencesLittle RockUSA
  2. 2.Department of Neurobiology and Developmental ScienceUniversity of Arkansas for Medical SciencesLittle RockUSA
  3. 3.Geriatric Research Education Clinical CenterCentral Arkansas Veterans Healthcare SystemLittle RockUSA
  4. 4.Department of PathologyUniversity of Toledo College of MedicineToledoUSA

Personalised recommendations