The hygiene hypothesis and Type 1 diabetes

  • Anne Cooke
Part of the Progress in Inflammation Research book series (PIR)


The incidence of some autoimmune diseases is increasing dramatically in the developed world. For example, the incidence of the autoimmune disease, Type 1 diabetes (T1D), is increasing in the UK at a rate of 4% per annum; faster than can be accounted for by genetic change. In the case of T1D, as for many autoimmune diseases, the development of the disease is known to have a genetic component with many genes playing a role in governing the development of disease [1]. However, the development of Type 1 diabetes is not wholly governed by genetics and a role for environmental factors is shown by the 40% concordance rate for development of T1D in identical twins. This lack of 100% concordance in identical twins which is indicative of environmental effects acting on a genetic background is also seen for some other autoimmune diseases such as multiple sclerosis (MS) and systemic lupus erythematosus (SLE). There has been considerable interest in analysing the basis for the dramatic rise in incidence of T1D in the developed world with particular emphasis being placed on the role that infection might play in exacerbating or preventing onset of this autoimmune condition. The evidence that infection may play a role in the prevention of T1D is discussed in this chapter.


Multiple Sclerosis Systemic Lupus Erythematosus Experimental Autoimmune Encephalomyelitis Pancreatic Beta Cell iNKT Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Redondo MJ, Fain PR, Eisenbarth GS (2001) Genetics of type 1A diabetes. Recent Prog Horm Res 56: 69–89CrossRefPubMedGoogle Scholar
  2. 2.
    Hermanowski J, Bouzigon E, Forabosco P, Ng MY, Fisher SA, Lewis CM (2007) Metaanalysis of genome-wide linkage studies for multiple sclerosis, using an extended GSMA method. Eur J Hum Genet 15: 703–710CrossRefPubMedGoogle Scholar
  3. 3.
    Hakonarson H, Grant SF, Bradfield JP, Marchand L, Kim CE, Glessner JT, Grabs R, Casalunovo T, Taback SP Frackelton EC et al (2007) A genome-wide association study identifies KIA A0350 as a type 1 diabetes gene. Nature 448: 591–594CrossRefPubMedGoogle Scholar
  4. 4.
    Hafler DA, Compston, A, Sawcer S, Lander ES, Daly MJ, De Jager PL de Bakker PI, Gabriel SB, Mirel DB, Ivinson AJ et al (2007) Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 357: 851–862CrossRefPubMedGoogle Scholar
  5. 5.
    (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661–678Google Scholar
  6. 6.
    Yung R, Chang S, Hemati N, Johnson K, Richardson B (1997) Mechanisms of drug-induced lupus. IV. Comparison of procainamide and hydralazine with analogs in vitro and in vivo. Arthritis Rheum 40: 1436–1443CrossRefPubMedGoogle Scholar
  7. 7.
    Cooke A, Lydyard PM (1981) The role of T cells in autoimmune diseases Pathol Res Pract 171: 173–196PubMedGoogle Scholar
  8. 8.
    Strickland FM, Richardson BC (2008) Epigenetics in human autoimmunity. Epigenetics in autoimmunity — DNA methylation in systemic lupus erythematosus and beyond. Autoimmunity 41: 278–286CrossRefPubMedGoogle Scholar
  9. 9.
    Yoon JW, Austin M, Onodera T, Notkins AL (1979) Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300: 1173–1179PubMedGoogle Scholar
  10. 10.
    Sarchielli P, Trequattrini A, Usai F, Murasecco D, Gallai V (1993) Role of viruses in the etiopathogenesis of multiple sclerosis. Acta Neurol (Napoli) 15: 363–381Google Scholar
  11. 11.
    Clark D (2004) Human herpesvirus type 6 and multiple sclerosis. Herpes 11 (Suppl 2): 112A–119APubMedGoogle Scholar
  12. 12.
    Green J, Casabonne D, Newton R (2004) Coxsackie B virus serology and Type 1 diabetes mellitus: a systematic review of published case-control studies. Diabet Med 21: 507–514CrossRefPubMedGoogle Scholar
  13. 13.
    Christensen T (2006) The role of EBV in MS pathogenesis. Int MS J 13: 52–57PubMedGoogle Scholar
  14. 14.
    Drescher KM, Tracy SM (2008) The CVB and etiology of type 1 diabetes. Curr Top Microbiol Immunol 323: 259–274CrossRefPubMedGoogle Scholar
  15. 15.
    Filippi CM, von Herrath MG (2008) Viral trigger for type 1 diabetes: pros and cons. Diabetes 57: 2863–2871CrossRefPubMedGoogle Scholar
  16. 16.
    Lincoln JA, Hankiewicz K, Cook SD (2008) Could Epstein-Barr virus or canine distemper virus cause multiple sclerosis? Neurol Clin 26: 699–715, viiiCrossRefPubMedGoogle Scholar
  17. 17.
    Toniolo A, Onodera T, Jordan G, Yoon JW, Notkins AL (1982) Virus-induced diabetes mellitus. Glucose abnormalities produced in mice by the six members of the Coxsackie B virus group. Diabetes 31: 496–499CrossRefPubMedGoogle Scholar
  18. 18.
    Coulson BS, Witterick PD, Tan Y, Hewish MJ, Mountford JN, Harrison LC, Honeyman MC (2002) Growth of rotaviruses in primary pancreatic cells. J Virol 76: 9537–9544CrossRefPubMedGoogle Scholar
  19. 19.
    Onodera T, Jenson AB, Yoon JW, Notkins AL (1978) Virus-induced diabetes mellitus: reovirus infection of pancreatic beta cells in mice. Science 201: 529–531CrossRefPubMedGoogle Scholar
  20. 20.
    Serreze DV, Leiter EH, Kuff EL, Jardieu P, Ishizaka K (1988) Molecular mimicry between insulin and retroviral antigen p73. Development of cross-reactive autoantibodies in sera of NOD and C57BL/KsJ db/db mice. Diabetes 37: 351–358CrossRefPubMedGoogle Scholar
  21. 21.
    Honeyman MC, Stone NL, Harrison LC (1998) T-cell epitopes in type 1 diabetes autoantigen tyrosine phosphatase IA-2: potential for mimicry with rotavirus and other environmental agents. Mol Med 4: 231–239PubMedGoogle Scholar
  22. 22.
    Vreugdenhil GR, Geluk A, Ottenhoff TH, Melchers WJ, Roep BO, Galama JM (1998) Molecular mimicry in diabetes mellitus: the homologous domain in coxsackie B virus protein 2C and islet autoantigen GAD65 is highly conserved in the coxsackie B-like enteroviruses and binds to the diabetes associated HLA-DR3 molecule. Diabetologia 41: 40–46CrossRefPubMedGoogle Scholar
  23. 23.
    Knip M, Siljander H (2008) Autoimmune mechanisms in type 1 diabetes. Autoimmun Rev 7: 550–557CrossRefPubMedGoogle Scholar
  24. 24.
    Goldfarb MF (2008) Relation of time of introduction of cow milk protein to an infant and risk of type-1 diabetes mellitus. J Proteome Res 7: 2165–2167CrossRefPubMedGoogle Scholar
  25. 25.
    Fort P, Lanes R, Dahlem S, Recker B, Weyman-Daum M, Pugliese M, Lifshitz F (1986) Breast feeding and insulin-dependent diabetes mellitus in children. J Am Coll Nutr 5: 439–441PubMedGoogle Scholar
  26. 26.
    Martin JM, Trink B, Daneman D, Dosch HM, Robinson B (1991) Milk proteins in the etiology of insulin-dependent diabetes mellitus (IDDM). Ann Med 23: 447–452CrossRefPubMedGoogle Scholar
  27. 27.
    Rosenbauer J, Herzig P, Giani G (2008) Early infant feeding and risk of type 1 diabetes mellitus-a nationwide population-based case-control study in pre-school children. Diabetes Metab Res Rev 24: 211–222CrossRefPubMedGoogle Scholar
  28. 28.
    Schrezenmeir J, Jagla A (2000) Milk and diabetes. J Am Coll Nutr 19: 176S–190SPubMedGoogle Scholar
  29. 29.
    Wasmuth HE, Kolb H (2000) Cow’s milk and immune-mediated diabetes. Proc Nutr Soc 59: 573–579PubMedCrossRefGoogle Scholar
  30. 30.
    Banting FG, Best CH (1922) The internal secretion of the pancreas. Laboratory and Clinical Medicine 7: 465–480Google Scholar
  31. 31.
    Poolman EM, Galvani AP (2007) Evaluating candidate agents of selective pressure for cystic fibrosis. J R Soc Interface 4: 91–98CrossRefPubMedGoogle Scholar
  32. 32.
    Weatherall DJ, Clegg JB (2002) Genetic variability in response to infection: malaria and after. Genes Immun 3: 331–337CrossRefPubMedGoogle Scholar
  33. 33.
    Gale EA (2002) The rise of childhood type 1 diabetes in the 20th century. Diabetes 51: 3353–3361CrossRefPubMedGoogle Scholar
  34. 34.
    Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299: 1259–1260CrossRefPubMedGoogle Scholar
  35. 35.
    Cooke A, Tonks P, Jones FM, O’Shea H, Hutchings P, Fulford AJ, Dunne DW (1999) Infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunol 21: 169–176CrossRefPubMedGoogle Scholar
  36. 36.
    Raine T, Zaccone P, Dunne DW, Cooke A (2004) Can helminth antigens be exploited therapeutically to downregulate pathological Th1 responses?, Curr Opin Investig Drugs 5: 1184–1191PubMedGoogle Scholar
  37. 37.
    Kikutani H, Makino S (1992) The murine autoimmune diabetes model: NOD and related strains. Adv Immunol 51: 285–322CrossRefPubMedGoogle Scholar
  38. 38.
    Harada M, Kishimoto Y, Makino S (1990) Prevention of overt diabetes and insulitis in NOD mice by a single BCG vaccination. Diabetes Res Clin Pract 8: 85–89CrossRefPubMedGoogle Scholar
  39. 39.
    Castro AP, Esaguy N, Aguas AP (1993) Effect of mycobacterial infection in the lupusprone MRL/lpr mice: enhancement of life span of autoimmune mice, amelioration of kidney disease and transient decrease in host resistance. Autoimmunity 16: 159–166CrossRefPubMedGoogle Scholar
  40. 40.
    Qin HY, Sadelain MW, Hitchon C, Lauzon J, Singh B (1993) Complete Freund’s adjuvant-induced T cells prevent the development and adoptive transfer of diabetes in nonobese diabetic mice. J Immunol 150: 2072–2080PubMedGoogle Scholar
  41. 41.
    Baxter AG, Horsfall AC, Healey D, Ozegbe P, Day S, Williams DG, Cooke A (1994) Mycobacteria precipitate an SLE-like syndrome in diabetes-prone NOD mice. Immunology 83: 227–231PubMedGoogle Scholar
  42. 42.
    Bras A, Aguas AP (1996) Diabetes-prone NOD mice are resistant to Mycobacterium avium and the infection prevents autoimmune disease. Immunology 89: 20–25CrossRefPubMedGoogle Scholar
  43. 43.
    Zaccone P, Fehervari Z, Jones FM, Sidobre S, Kronenberg M, Dunne DW, Cooke A (2003) Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur J Immunol 33: 1439–1449CrossRefPubMedGoogle Scholar
  44. 44.
    Zaccone P, Raine T, Sidobre S, Kronenberg M, Mastroeni P, Cooke A (2004) Salmonella typhimurium infection halts development of type 1 diabetes in NOD mice. Eur J Immunol 34: 3246–3256CrossRefPubMedGoogle Scholar
  45. 45.
    Raine T, Zaccone P, Mastroeni P, Cooke A (2006) Salmonella typhimurium infection in nonobese diabetic mice generates immunomodulatory dendritic cells able to prevent type 1 diabetes. J Immunol 177: 2224–2233PubMedGoogle Scholar
  46. 46.
    Kane CM, Cervi L, Sun J, McKee AS, Masek KS, Shapira S, Hunter CA, Pearce EJ (2004) Helminth antigens modulate TLR-initiated dendritic cell activation. J Immunol 173: 7454–7461PubMedGoogle Scholar
  47. 47.
    Beaudoin L, Laloux V, Novak J, Lucas B, Lehuen A (2002) NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic beta cells. Immunity 17: 725–736CrossRefPubMedGoogle Scholar
  48. 48.
    Naumov YN, Bahjat KS, Gausling R, Abraham R, Exley MA, Koezuka Y, Balk SB, Strominger JL, Clare-Salzer M, Wilson SB (2001) Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc Natl Acad Sci USA 98: 13838–13843CrossRefPubMedGoogle Scholar
  49. 49.
    Sharif S, Arreaza GA, Zucker P, Mi QS, Sondhi J, Naidenko OV, Kronenberg M, Koezuka Y, Delovitch TL, Gombert JM et al (2001) Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat Med 7: 1057–1062CrossRefPubMedGoogle Scholar
  50. 50.
    Dunne DW, Cooke A (2005) A worm’s eye view of the immune system: consequences for evolution of human autoimmune disease. Nat Rev Immunol 5: 420–426CrossRefPubMedGoogle Scholar
  51. 51.
    La Flamme AC, Ruddenklau K, Backstrom BT (2003) Schistosomiasis decreases central nervous system inflammation and alters the progression of experimental autoimmune encephalomyelitis. Infect Immun 71: 4996–5004CrossRefPubMedGoogle Scholar
  52. 52.
    Sewell D, Qing Z, Reinke E, Elliot D, Weinstock J, Sandor M, Fabry Z (2003) Immunomodulation of experimental autoimmune encephalomyelitis by helminth ova immunization. Int Immunol 15: 59–69CrossRefPubMedGoogle Scholar
  53. 53.
    Mattsson L, Larsson P, Erlandsson-Harris H, Klareskog L, Harris RA (2000) Parasitemediated down-regulation of collagen-induced arthritis (CIA) in DA rats. Clin Exp Immunol 122: 477–483CrossRefPubMedGoogle Scholar
  54. 54.
    Costalonga M, Hodges JS, Herzberg MC (2002) Streptococcus sanguis modulates type II collagen-induced arthritis in DBA/1J mice. J Immunol 169: 2189–2195PubMedGoogle Scholar
  55. 55.
    Khan WI, Blennerhasset PA, Varghese AK Chowdhury SK, Omsted P, Deng Y, Collins SM (2002) Intestinal nematode infection ameliorates experimental colitis in mice. Infect Immun 70: 5931–5937CrossRefPubMedGoogle Scholar
  56. 56.
    Elliott DE, Li J, Blum A, Metwali A, Qadir K, Urban JF, Jr., Weinstock JV (2003) Exposure to schistosome eggs protects mice from TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol 284: G385–391PubMedGoogle Scholar
  57. 57.
    Maizels RM, Yazdanbakhsh M (2003) Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol 3: 733–744CrossRefPubMedGoogle Scholar
  58. 58.
    McInnes IB, Leung BP, Harnett M, Gracie JA, Liew FY, Harnett W (2003) A novel therapeutic approach targeting articular inflammation using the filarial nematode-derived phosphorylcholine-containing glycoprotein ES-62. J Immunol 171: 2127–2133PubMedGoogle Scholar
  59. 59.
    Mangan NE, Fallon RE, Smith P, van Rooijen N, McKenzie AN, Fallon PG (2004) Helminth infection protects mice from anaphylaxis via IL-10-producing B cells. J Immunol. 173: 6346–6356PubMedGoogle Scholar
  60. 60.
    Wohlleben G, Trujillo C, Muller J, Ritze Y, Grunewald S, Tatsch U, Erb KJ (2004) Helminth infection modulates the development of allergen-induced airway inflammation. Int Immunol 16: 585–596CrossRefPubMedGoogle Scholar
  61. 61.
    Harnett W, Harnett MM (2006) Filarial nematode secreted product ES-62 is an anti-inflammatory agent: therapeutic potential of small molecule derivatives, and ES-62 peptide mimetics. Clin Exp Pharmacol Physiol 33 511–518CrossRefPubMedGoogle Scholar
  62. 62.
    Saunders KA, Raine T, Cooke A, Lawrence CE (2007) Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection. Infect Immun 75: 397–407CrossRefPubMedGoogle Scholar
  63. 63.
    Smith P, Mangan NE, Walsh CM, Fallon RE, McKenzie AN, van Rooijen N, Fallon PG (2007) Infection with a helminth parasite prevents experimental colitis via a macrophage-mediated mechanism. J Immunol 178: 4557–4566PubMedGoogle Scholar
  64. 64.
    Correale J, Farez M (2007) Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol 61: 97–108CrossRefPubMedGoogle Scholar
  65. 65.
    Elliott DE, Setiawan T, Metwali A, Blum A, Urban JF, Jr., Weinstock JV (2004) Heligmosomoides polygyrus inhibits established colitis in IL-10-deficient mice. Eur J Immunol 34: 2690–2698CrossRefPubMedGoogle Scholar
  66. 66.
    Summers RW, Elliott DE, Qadir K, Urban JF, Jr., Thompson R, Weinstock JV (2003) Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am J Gastroenterol 98: 2034–2041CrossRefPubMedGoogle Scholar
  67. 67.
    Summers RW, Elliott DE, Urban JF, Jr., Thompson R, Weinstock JV (2005) Trichuris suis therapy in Crohn’s disease. Gut 54: 87–90CrossRefPubMedGoogle Scholar
  68. 68.
    Summers RW, Elliott DE, Urban JF, Jr., Thomspon RA, Weinstock JV (2005) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128: 825–832CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Anne Cooke
    • 1
  1. 1.Department of PathologyUniversity of CambridgeCambridgeUK

Personalised recommendations