Advertisement

Stueckelberg 1937–1942: The B-Field and Antiparticles as Time-Reversed Particles

  • Henri Ruegg
  • Marti Ruiz-Altaba

Abstract

We review some of the scientific work done by E. C. G. Stueckelberg just before and just after the outbreak of World War II. In 1938, he introduced what is now known as the Stueckelberg mechanism for giving mass to a gauge field while preserving gauge invariance. In 1941, Stueckelberg introduced the concept of antiparticles as time-reversed particles.

Keywords

Massive Vector Hamiltonian Density Nonabelian Gauge Theory Lorentz Condition Polyakov Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergshoeff, E. and Kallosh, R., BRST quantization of the Green-Schwarz superstring, Nucl. Phys., vol. B333 (1990) pp. 605–634.CrossRefMathSciNetADSGoogle Scholar
  2. Curci, G. and Ferrari, R., On a class of Lagrangian models for massive and massless Yang-Mills fields, Nuovo Cim., vol. 32A (1976), pp. 151–168CrossRefADSGoogle Scholar
  3. Damour, T., Strong field effects in general relativity, Helv. Phys. Acta, vol. 59 (1986), pp. 292–302.MathSciNetADSGoogle Scholar
  4. Delbourgo, R., A supersymmetric Stueckelberg formalism, J. Phys., vol. G8 (1975), pp. 800–804.ADSGoogle Scholar
  5. Delbourgo, R., Twisk, S. and Thompson, G., Massive Yang-Mills theory: Renormalizability versus unitarity, Int. J. Mod. Phys., vol. A3 (1988), pp. 435–449.ADSGoogle Scholar
  6. Feynman, R. P., Relativistic cut-off for classical electrodynamics, Phys. Rev., vol. 74 (1948), pp. 939–946.MATHCrossRefMathSciNetADSGoogle Scholar
  7. Feynman, R. P., Theory of positrons, Phys. Rev., vol. 76 (1949), pp. 749–759.MATHCrossRefMathSciNetADSGoogle Scholar
  8. Green, M. B., Schwarz, J. H. and Witten, E., Superstring Theory, Vol. 1. Cambridge: Cambridge Univ. Press, 1986.Google Scholar
  9. Hurth, T., Higgs-free massive nonabelian gauge theories, Helv. Phys. Acta, vol. 70 (1997), pp. 406–416.MATHMathSciNetGoogle Scholar
  10. Kunimasa, T. and Goto, T., Generalization of the Stueckelberg formalism to the massive Yang-Mills field, Prog. Theor. Phys., vol. 37 (1967), pp. 452–464.CrossRefADSGoogle Scholar
  11. Luo, J., Tu, L.-Ch., Hu, Z.-K. and Luan, E.-J., New experimental limit on the photon rest mass with a rotating torsion balance, Phys. Rev. Lett., vol. 90 (2003), pp. 081801.1–081801.4ADSGoogle Scholar
  12. Matthews, P. T., The S-matrix for meson-nucleon interactions, Phys. Rev., vol. 76 (1949), pp. 1254–1255.CrossRefMathSciNetADSGoogle Scholar
  13. Oppenheimer, J. R. and Serber, R., Note on the nature of cosmic ray particles, Phys. Rev., vol. 51 (1937), p. 1113CrossRefADSGoogle Scholar
  14. Pais, A., Inward Bound. Of Matter and Forces in the Physical World. Oxford: Clarendon Press, 1986.Google Scholar
  15. Pauli, W., Relativistic field theories of elementary particles, Rev. Mod. Phys., vol. 13 (1941), pp. 203–232.MATHCrossRefADSGoogle Scholar
  16. Proca, A., Sur la théorie ondulatoire des electrons positifs et négatifs, J. Phys. Radium, vol. 7 (1936), pp. 347–353MATHCrossRefGoogle Scholar
  17. Ramond, P., A pedestrian approach to covariant string theory, Prog. Theor. Phys. Suppl., vol. 86 (1986), pp. 126–134CrossRefMathSciNetADSGoogle Scholar
  18. Ruegg, H. and Ruiz-Altaba, M., The Stueckelberg field, Int. J. Mod. Phys. A, vol. 19 (2004), pp. 3265–3347.MATHCrossRefMathSciNetADSGoogle Scholar
  19. Salam, A. Renormalizability of gauge theories, Phys. Rev., vol. 127 (1962), pp. 331–334.MATHCrossRefMathSciNetADSGoogle Scholar
  20. Slavnov, A. A., Massive gauge fields, Teor. Mat. Fiz., vol. 10 (1972), pp. 305–328, english translation in Theor. Math. Phys., vol. 10 (1972), pp. 201–217.Google Scholar
  21. Ümezawa, H and Kamefuchi, S, Equivalence theorems and renormalization problem in vector field theory (the Yang-Mills field with non-vanishing masses), Nucl. Phys., vol. 23 (1961), pp. 399–429.CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag AG 2009

Authors and Affiliations

  • Henri Ruegg
  • Marti Ruiz-Altaba

There are no affiliations available

Personalised recommendations