Skip to main content

Abstract

We review some of the scientific work done by E. C. G. Stueckelberg just before and just after the outbreak of World War II. In 1938, he introduced what is now known as the Stueckelberg mechanism for giving mass to a gauge field while preserving gauge invariance. In 1941, Stueckelberg introduced the concept of antiparticles as time-reversed particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergshoeff, E. and Kallosh, R., BRST quantization of the Green-Schwarz superstring, Nucl. Phys., vol. B333 (1990) pp. 605–634.

    Article  MathSciNet  ADS  Google Scholar 

  • Curci, G. and Ferrari, R., On a class of Lagrangian models for massive and massless Yang-Mills fields, Nuovo Cim., vol. 32A (1976), pp. 151–168

    Article  ADS  Google Scholar 

  • Damour, T., Strong field effects in general relativity, Helv. Phys. Acta, vol. 59 (1986), pp. 292–302.

    MathSciNet  ADS  Google Scholar 

  • Delbourgo, R., A supersymmetric Stueckelberg formalism, J. Phys., vol. G8 (1975), pp. 800–804.

    ADS  Google Scholar 

  • Delbourgo, R., Twisk, S. and Thompson, G., Massive Yang-Mills theory: Renormalizability versus unitarity, Int. J. Mod. Phys., vol. A3 (1988), pp. 435–449.

    ADS  Google Scholar 

  • Feynman, R. P., Relativistic cut-off for classical electrodynamics, Phys. Rev., vol. 74 (1948), pp. 939–946.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Feynman, R. P., Theory of positrons, Phys. Rev., vol. 76 (1949), pp. 749–759.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Green, M. B., Schwarz, J. H. and Witten, E., Superstring Theory, Vol. 1. Cambridge: Cambridge Univ. Press, 1986.

    Google Scholar 

  • Hurth, T., Higgs-free massive nonabelian gauge theories, Helv. Phys. Acta, vol. 70 (1997), pp. 406–416.

    MATH  MathSciNet  Google Scholar 

  • Kunimasa, T. and Goto, T., Generalization of the Stueckelberg formalism to the massive Yang-Mills field, Prog. Theor. Phys., vol. 37 (1967), pp. 452–464.

    Article  ADS  Google Scholar 

  • Luo, J., Tu, L.-Ch., Hu, Z.-K. and Luan, E.-J., New experimental limit on the photon rest mass with a rotating torsion balance, Phys. Rev. Lett., vol. 90 (2003), pp. 081801.1–081801.4

    ADS  Google Scholar 

  • Matthews, P. T., The S-matrix for meson-nucleon interactions, Phys. Rev., vol. 76 (1949), pp. 1254–1255.

    Article  MathSciNet  ADS  Google Scholar 

  • Oppenheimer, J. R. and Serber, R., Note on the nature of cosmic ray particles, Phys. Rev., vol. 51 (1937), p. 1113

    Article  ADS  Google Scholar 

  • Pais, A., Inward Bound. Of Matter and Forces in the Physical World. Oxford: Clarendon Press, 1986.

    Google Scholar 

  • Pauli, W., Relativistic field theories of elementary particles, Rev. Mod. Phys., vol. 13 (1941), pp. 203–232.

    Article  MATH  ADS  Google Scholar 

  • Proca, A., Sur la théorie ondulatoire des electrons positifs et négatifs, J. Phys. Radium, vol. 7 (1936), pp. 347–353

    Article  MATH  Google Scholar 

  • Ramond, P., A pedestrian approach to covariant string theory, Prog. Theor. Phys. Suppl., vol. 86 (1986), pp. 126–134

    Article  MathSciNet  ADS  Google Scholar 

  • Ruegg, H. and Ruiz-Altaba, M., The Stueckelberg field, Int. J. Mod. Phys. A, vol. 19 (2004), pp. 3265–3347.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Salam, A. Renormalizability of gauge theories, Phys. Rev., vol. 127 (1962), pp. 331–334.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Slavnov, A. A., Massive gauge fields, Teor. Mat. Fiz., vol. 10 (1972), pp. 305–328, english translation in Theor. Math. Phys., vol. 10 (1972), pp. 201–217.

    Google Scholar 

  • Ümezawa, H and Kamefuchi, S, Equivalence theorems and renormalization problem in vector field theory (the Yang-Mills field with non-vanishing masses), Nucl. Phys., vol. 23 (1961), pp. 399–429.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag AG

About this chapter

Cite this chapter

Ruegg, H., Ruiz-Altaba, M. (2009). Stueckelberg 1937–1942: The B-Field and Antiparticles as Time-Reversed Particles. In: Lacki, J., Ruegg, H., Wanders, G. (eds) E.C.G. Stueckelberg, An Unconventional Figure of Twentieth Century Physics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8878-2_6

Download citation

Publish with us

Policies and ethics