Stueckelberg’s Unitary Field Theory of 1936–1939

  • Olivier Darrigol


The scientific production of Ernst Carl Gerlach Stueckelberg von Breidenbach reached a peak in the years 1936–39, in which he produced a series of deeply original papers on quantum field theory and its applications to nuclear matter. The only trace of this work in the memory of today’s physicists is the Stueckelberg B-field, a trick to avoid troubles in quantizing massive vector-fields. Yet Stueckelberg’s innovations went far beyond this formal contribution. For instance, he devised the first manifestly covariant perturbation theory, and he greatly contributed to the meson-field theory of nuclear interactions. Considerations of style, timing, and character explain the disparity between his achievements and their long-term appreciation.


Quantum Electrodynamic Canonical Transformation Nuclear Force Commutation Rule Neutron State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown, L., The idea of the neutrino, Physics Today, vol. 31 (1978), pp. 23–28.CrossRefGoogle Scholar
  2. Brown, L. and Rechenberg, H., The Origin of the Concept of Nuclear Forces. Bristol: Institute of Physics Publishing, 1996.Google Scholar
  3. Carson, C., The peculiar notion of exchange forces. II: From nuclear forces to QED, 1929-1950, Studies in History and Philosophy of Modern Physics, vol. 27 (1996), pp. 99–131.CrossRefMathSciNetGoogle Scholar
  4. Darrigol, O., Les débuts de la théorie quantique des champs, thèse de 3ème cycle, Üniversité de Paris 1, 1982.Google Scholar
  5. Darrigol, O., La genèse du concept de champ quantique, Annales de physique, vol. 9 (1984), pp. 433–501.CrossRefADSGoogle Scholar
  6. Darrigol, O., The origin of quantized matter waves, Historical Studies in the Physical Sciences, vol. 16 (1986), pp. 198–253.Google Scholar
  7. Darrigol, O., Elements of a scientific biography of Tomonaga Sin-itiro, Historical Studies in the Physical Sciences, vol. 35 (1988), pp. 1–29.MathSciNetGoogle Scholar
  8. Darrigol, O., The quantum electrodynamical analogy in early nuclear theory or the roots of Yukawa’s theory, Revue d’histoire des sciences, vol. 41 (1988), pp. 225–297.CrossRefGoogle Scholar
  9. Dirac, P., Relativistic quantum mechanics, Proceedings of the Royal Society of London, vol. 136 (1932), pp. 453–464MATHCrossRefADSGoogle Scholar
  10. Dirac, P.A.M., Fock, V., and Podolsky, B., On quantum elecrodynamics, Physikalische Zeitschrift der Sowjetunion, vol. 2 (1932), pp. 468–479.MATHGoogle Scholar
  11. Enz, Ch., Obituary of E.C.G. Stueckelberg, Physics Today, vol. 39 (1986), pp. 119–121.CrossRefGoogle Scholar
  12. Fermi, E., Tentativo di una teoria dei raggi β, Nuovo Cimento, vol. 2 (1934), pp. 1–19.Google Scholar
  13. Fermi, E., Versuch einer Theorie der β-Strahlen, Zeitschrift fur Physik, vol. 88 (1934), pp. 161–171.MATHCrossRefADSGoogle Scholar
  14. Lacki, J., Ruegg, H. and Telegdi, V., The road to Stueckelberg’s covariant perturbation theory as illustrated by successive treatments of Compton scattering, Studies in History and Philosophy of Modern Physics, vol. 30 (1999), pp. 457–518.CrossRefMathSciNetGoogle Scholar
  15. Heisenberg, W., Die Grenzen der Anwendbarkeit der bisherigen Quantentheorie, Zeitschrift für Physik, vol. 110 (1938), pp. 251–260.MATHCrossRefADSGoogle Scholar
  16. Kemmer, N., Zur Theorie der Neutron-Proton Wechselwirkung, Helvetica Physica Acta, vol. 10 (1936), pp. 47–67.Google Scholar
  17. Meyenn, K. von (ed), Wolfgang Pauli, Wissenschaflicher Briefwechsel, vols. 2–3. New York: Springer, 1985, 1993.Google Scholar
  18. Monaldi, D., Life of μ: The observations of the spontaneous decay of mesotrons and its consequences, Annals of Science, vol. 62 (2005), pp. 419–456.CrossRefGoogle Scholar
  19. Møller, Ch. and Rosenfeld, L., Theory of mesons and nuclear forces, Nature, vol. 143 (1939), pp. 241–242.MATHCrossRefADSGoogle Scholar
  20. Rosenfeld, L., Über eine mögliche Fassung des Diracschen Programms zur Quantenelektrodynamik und deren formalen Zusammenhang mit der Heisenberg-Paulischen Theorie, Zeitschrift für Physik, vol. 76 (1932), pp. 729–734.MATHCrossRefADSGoogle Scholar
  21. Ruegg, H. and Ruiz-Altaba, M., The Stueckelberg field, International Journal of Modern Physics A, vol. 19 (2004), pp. 3265–3347.MATHCrossRefMathSciNetADSGoogle Scholar
  22. Schweber, S. S., QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga. Princeton: Princeton Üniv. Press, 1994.Google Scholar
  23. Stuewer, R., The nuclear electron hypothesis, in Shea, W. (ed.), Otto Hahn and the Rise of Nuclear Physics. Dordrecht: D. Reidel, 1983, pp. 19–67.Google Scholar
  24. Yukawa, H., On the interaction of elementary particles. I, Physico-Mathemical Society of Japan, Proceedings, vol. 17 (1935), pp. 48–57.MATHGoogle Scholar
  25. Wenger, R., Ernst C. G. Stuckelberg von Breidenbach: Etude biographique. Bibliothèque Section de Physique, Facultè des Sciences de l’Üniversité de Geneve, (unpublished MS, 1986).Google Scholar

Copyright information

© Birkhäuser Verlag AG 2009

Authors and Affiliations

  • Olivier Darrigol

There are no affiliations available

Personalised recommendations