Some of A.I. Shirshov’s works

• Vladislav K. Kharchenko
Part of the Contemporary Mathematicians book series (CM)

Abstract

In his first published paper “Subalgebras of free Lie algebras” A.I. Shirshov proved for Lie algebras an analog of the famous Nielsen-Schreier theorem: every subalgebra of a free Lie algebra is free. Three years later this theorem was independently proved and extended to restricted Lie algebras by E. Witt [38]. Much later this result was generalized to Lie superalgebras (A.S. Shtern [29]), and to colored Lie superalgebras (A.A. Mikhalev [20, 21, 22]). These results went through further development in the field of quantum algebra as follows. The Shirshov-Witt theorem for Lie algebras over fields of characteristic zero admits an equivalent formulation in terms of a free associative algebra: Every Hopf subalgebra of a free algebra k<y i > with the coproduct defined by Δ (y i )=y i ⊗1+1⊗y i is free. If we consider the free algebra as a braided Hopf algebra with a very special braiding (τ(y i y j )=p ij y j y i P ij P ji =1), then we get a reformulation of the Mikhalev-Shtern generalization as well. We may consider the free associative algebra k<V> as a braided Hopf algebra provided that V is a braided space with arbitrary braiding (not necessary invertible). In this setting the braided version of the Shirshov-Witt theorem takes the following form [12]: If a subalgebra $$U \subseteq k\left\langle V \right\rangle$$ is a right categorical right coideal, that is $$\Delta U \subseteq U\underline \otimes k\left\langle V \right\rangle$$, $$\tau \left( {k\left\langle V \right\rangle \otimes U} \right) \subseteq U \otimes k\left\langle V \right\rangle$$, then U is a free subalgebra.

Keywords

Hopf Algebra Commutative Ring Free Algebra Associative Ring Free Associative Algebra
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

References

1. [1]
G. Birkhoff, Representability of Lie algebras and Lie groups by matrices, Annals Math., v.38(1937), 526–532.
2. [2]
P. Cartier, Remarques sur le théorème de Birkhoff-Witt, Ann. Scuola norm sup. Pisa, Sci. fis. mat. v.3, Ser. 12(1958), 1–4.
3. [3]
P.M. Cohn, A remark on the Birkhoff-Witt theorem, J. London Math. Soc., v. 38(1963), 197–203.
4. [4]
P.M. Cohn, Subalgebras of free associative algebras, Proc. London Math. Soc. (3) 14, (1964), 618–632.Google Scholar
5. [5]
M. Graña, I. Heckenberger, On a factorization of graded Hopf algebras using Lyndon words, Journal of Algebra, v. 314, N1(2007), 324–343.
6. [6]
C.K. Gupta and U.U. Umirbaev, Systems of linear equations over associative algebras and the occurence problem for Lie algebras, Commun. Algebra, 27(1999), 411–427.
7. [7]
C.K. Gupta and U.U. Umirbaev, The occurence problem for free metanilpotent Lie algebras, Commun. Algebra, 27(1999), 5857–5876.
8. [8]
H.-J. Higgins, Baer invariants and the Birkhoff-Witt theorem, Journal of Algebra, v. 11(1969), 469–482.
9. [9]
V.K. Kharchenko, Automorphisms and Derivations of Associative Rings, Kluwer Academic Publishers, Dordrecht Boston-London, 1991.
10. [10]
V.K. Kharchenko, Noncommutative Galois Theory, Nauchnaja Kniga, Novosibirsk, 1996.
11. [11]
V.K. Kharchenko, A quantum analog of the Poincaré-Birkhoff-Witt theorem, Algebra i Logika, 38, N4(1999), 476–507. English translation: Algebra and Logic, 38, N4(1999), 259–276 (QA/0005101).
12. [12]
V.K. Kharchenko, Braided version of Shirshov-Witt theorem, Journal of Algebra, 294, N1(2005), 196–225.
13. [13]
V.K. Kharchenko, PBW-bases of coideal subalgebras and a freeness theorem, Transactions of the American Mmathematical Society, v. 360, N10(2008), 5121–5143.
14. [14]
V.K. Kharchenko, A.V. Lara Sagahon, Right coideal subalgebras in U q(5ln+1), Journal of Algebra, v. 319 (2008), 2571–2625.
15. [15]
G.P. Kukin, Primitive elements of free algebras, Algebra i Logika, v. 9, N4(1970), 458–472. English translation: Algebra and Logic, v. 9 (1970), 275–284.
16. [16]
P. Lalonde, A. Ram, Standard Lyndon bases of Lie algebras and enveloping algebras, Transactions of the American Mathematical Society, v. 347, N5(1995), 1821–1830.
17. [17]
M. Lazard, Sur les algèbres enveloppantes universelles de certaines algèbres de Lie, Publ. Sci. Univ. Alger, Sér. A. v. 1(1954), 281–294.
18. [18]
M. Lothaire, Algebraic Combinatorics on Words, Cambridge Univ. Press, 2002.Google Scholar
19. [19]
Lyndon, R.C. On Burnside’s problem, Trans. Am. Math. Soc., 77(1954), 202–215.
20. [20]
A.A. Mikhalev, Subalgebras of free color Lie superalgebras, Mat. Zametki 37 N5 (1985) 653–661. English translation: Math. Notes 37 (1985) 356–360.
21. [21]
A.A. Mikhalev, Free color Lie superalgebras, Dokl. Akad. Nauk SSSR, 286, N3 (1986) 551–554. English translation: Soviet Math. Dokl. 33 (1986) 136–139.
22. [22]
A.A. Mikhalev, Subalgebras of free Lie p-superalgebras, Mat. Zametki 43 N2(1988) 178–191. English translation: Math. Notes 43 (1988) 99–106.
23. [23]
A.A. Mikhalev, Primitive elements and automorphisms of free algebras of Schreier varieties, J. Math. Sci., 102, N6(2000), 4628–4640.
24. [24]
A.A. Mikhalev, U.U. Umirbaev, J.-T. Yu, Automorphic orbits of elements of free nonassociative algebras, Journal of Algebra, 243(2001), 198–223.
25. [25]
A.A. Mikhalev, U. Umirbaev, Jie-Tai Yu, Generic, almost primitive and test elements of free Lie algebras, Proc. Amer. Math. Soc., 130(2002), 1303–1310.
26. [26]
A.A. Mikhalev, A.A. Zolotykh, Rank and primitivity of elements of free color Lie (p-)superalgebras, Intern. J. Algebra and Computation, 4(1994), 617–656.
27. [27]
V.M. Petrogradsky, Schreier’s formulae for free Lie algebras, their Applications and Asymptotics, Proceedings of International Algebraic Conference on 90th Birthday of A.G. Kurosh, Moscow, 1998, Ed. by Y. Bahturin, and de Gruyter, Berlin, 2000.Google Scholar
28. [28]
V.M. Petrogradsky, Schreier’s formula for free Lie algebras. Arch. Math. (Basel), 75(2000), no. 1, 16–28.
29. [29]
A.S. Shtern, Free Lie superalgebras, Siberian Math. J. 27 (1986) 551–554.
30. [30]
W. Schmid, Poincare and Lie groups, Bull. (N.S.) Amer. Math. Soc. v. 6(1982), 175–186.
31. [31]
S. Ufer, PBW bases for a class of braided Hopf algebras, Journal of Algebra, 280, N1(2004), 84–119.
32. [32]
U.U. Umirbaev, On the approximation of free Lie algebras with respect to entry, Monoids, rings and algebras, Tartu: Tartuskij Universitet, Tartu Uelik. Toim., Mat.-Meh.-Alaseid Toeid, 878(1990), 147–152.
33. [33]
U.U. Umirbaev, The occurrence problem for Lie algebras, Algebra Logic, 32 (1993), no. 3, 173–181; translation from Algebra Logika, 32(1993), No. 3, 326–340.
34. [34]
U.U. Umirbaev, Partial derivations and endomorphisms of some relatively free Lie algebras, Sib. Math. J., 34(1993), no. 6, 1161–1170; translation from Sib. Mat. Zh. 34(1993), No. 6, 179–188.
35. [35]
U.U. Umirbaev, On Schreier varieties of algebras, Algebra Logic, 33(1994), no. 3, 180–193; translation from Algebra Logika, 33 (1994), No. 3, 317–340.
36. [36]
U.U. Umirbaev, Definig relations for automorphism groups of free algebras, J. Algebra, 314 (2007), 209–225.
37. [37]
E. Witt, Treue Darstellung Liescher Ringe, J. reine angew. Math. v. 177(1937), 152–160.Google Scholar
38. [38]
E. Witt, Die Unterringe der freien Lieschen Ringe, Math. Zeitschr. Bd. 64 (1956) 195–216.