Skip to main content

On Shirshov’s Papers for Lie Algebras

  • Chapter
Selected Works of A.I. Shirshov

Part of the book series: Contemporary Mathematicians ((CM))

  • 689 Accesses

Abstract

Shirshov published six papers on Lie algebras in which he found the following results (in order of publication. 1953–1962):

  • • Some years before Witt [84], the “Shirshov-Witt theorem” [1].

  • • Some years before Lazard [62], the “Lazard-Shirshov elimination process” [1]. This is often called “Lazard elimination”; see for example [79].

  • • The first example of a Lie ring that is not representable into any associative ring [2]; see also P. Cartier [37] and P.M. Cohn [43].

  • • In the same year as Chen-Fox-Lyndon [38], the “Lyndon-Shirshov basis” of a free Lie algebra (Lyndon-Shirshov Lie words) [6]. This is often called the “Lyndon basis”; see for example [63], [79] [64].

  • • Independently of Lyndon [65], the “Lyndon-Shirshov (associative) words” [6] They are often called “Lyndon words”; see for example [63]. In the literature they are also often called “(Shirshov’s) regular words” or “Lyndon-Shirshov words”; see for example [42], [24], [23], [85], [76], [14].

  • • The algorithmic criterion to recognize Lie polynomials in a free associative algebra over any commutative ring [6]. The algorithm is based on the property that the maximal (in deg-lex ordering) associative word of any Lie polynomial is an associative Lyndon-Shirshov word. The Friedrichs criterion [45] follows from the Shirshov algorithmic criterion (see [6]).

  • • In the same year as Chen-Fox-Lyndon [38], the “central result on Lyndon-Shirshov words”: any word is a unique non-decreasing product of Lyndon-Shirshov words [6]. This is often called the “Lyndon theorem” or the “Chen-Fox-Lyndon theorem”.

  • • The reduction algorithm for Lie polynomials: the elimination of the maximal Lyndon-Shirshov Lie word of a Lie polynomial in a Lyndon-Shirshov Lie word [6]. The algorithm is based on the Special Bracketing Lemma [6, Lemma 4], which in turn depends on the “central result on Lyndon-Shirshov words” above.

  • • The theorem that any Lie algebra of countable dimension is embeddable into two-generated Lie algebra with the same number of defining relations [6].

  • • Some years before Viennot [82], the “Hall-Shirshov bases” of a free Lie algebra [7]: a series of bases that contains the Hall basis and the Lyndon-Shirshov basis and depends on an ordering of basic Lie words such that [w]=[[u][v]]>[v]. They are often called “Hall sets”; see for example [79].

  • • Some years before Hironaka [53] and Buchberger [35], [36], the “Gröbner-Shirshov basis theory” for Lie polynomials (Lie algebras) explicitly and for noncommutative polynomials (associative algebras) implicitly [9]. This theory includes the definition of composition (s-polynomial), the reduction algorithm, the algorithm for producing a Gröbner-Shirshov basis (this is an infinite algorithm of Knuth-Bendix type [35]; see also the software implementations in [48], [87], [15], and the “Composition-Diamond Lemma”. Shirshov’s “Composition-Diamond Lemma” for associative algebras was formulated explicitly in [25] and rediscovered by G. Bergman [78] under the name “non-commutative Gröbner basis theory”. The analogous theory for polynomials (commutative algebras) was found by B. Buchberger [35], [36] under the name “Gröbner basis theory”; similar ideas for (commutative) formal series were found by H. Hironaka [53] under the name “standard basis theory”.

  • • The “Freiheitssatz” and the decidability of the word problem for one-relator Lie algebras [9].

  • • The first linear basis of the free product of Lie algebras [10].

  • • The first example showing that an analogue of the Kurosh subgroup theorem is not valid for subalgebras of the free product of Lie algebras [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shirshov, A.I., Subalgebras of free Lie algebras. (Russian) Mat. Sb., N. Ser. 33(75), 441–452 (1953).

    Google Scholar 

  2. Shirshov, A.I. On representation of Lie rings in associative rings (Russian) Usp. Mat. Nauk 8, No. 5 (57), 173–175 (1953).

    MATH  Google Scholar 

  3. Shirshov, A.I., Certain problems of the theory of non-associative algebras. Thesis, Moscow State University, 1953.

    Google Scholar 

  4. Shirshov, A.I., Subalgebras of free commutative and free anti-commutative algebras. Mat. Sbornik. 34(76) (1954), 81–88.

    MathSciNet  Google Scholar 

  5. Shirshov, A.I., Some theorems on embedding for rings (Russian) Mat. Sb., N. Ser. 40(82), 65–72 (1956).

    Google Scholar 

  6. Shirshov, A.I., On free Lie rings (Russian) Mat. Sb., N. Ser. 45(87), 113–122 (1958).

    Google Scholar 

  7. Shirshov, A.I., On bases of a free Lie algebra. (Russian) Algebra Logika, 1, No.1, 14–19 (1962).

    MATH  Google Scholar 

  8. Shirshov, A.I., Certain algorithmic problems for ε-algebras. (Russian) Sib. Mat. Zh. 3, 132–137 (1962).

    MATH  Google Scholar 

  9. Shirshov, A.I., Certain algorithmic problems for Lie algebras. (Russian) Sib. Mat. Zh. 3, 292–296 (1962). English translation: Shirshov, A.I., Certain algorithmic problems for Lie algebras. (English) ACM SIGSAM Bull. 33, No. 2, 3–6 (1999).

    MATH  Google Scholar 

  10. Shirshov, A.I., On the conjecture of the theory of Lie algebras. (Russian) Sib. Mat. Zh. 3, 297–301 (1962).

    MATH  Google Scholar 

  11. A.I. Shirshov, Collected Works. Rings and Algebras. Nauka, Moscow, 1984.

    Google Scholar 

  12. Adjan, S.I. Defining relations and algorithmic problems for groups and semigroups. (English. Russian original) Proc. Steklov Inst. Math. 85, 152 p. (1966); translation from Tr. Mat. Inst. Steklov 85, 123 p. (1966).

    Google Scholar 

  13. Yu.A. Bahturin, A.A. Mikhalev, M.V. Zaicev, and V.M. Petrogradsky, Infinite Dimensional Lie Superalgebras. Walter de Gruyter Publ., Berlin, New York, 1992.

    Google Scholar 

  14. Bahturin, Yuri; Mikhalev, Alexander A.; Zaicev, Mikhail Infinite-dimensional Lie superalgebras. (English) Hazewinkel, M. (ed.), Handbook of algebra. Volume 2. Amsterdam: North-Holland. 579–614 (2000).

    Google Scholar 

  15. Backelin, Jörgen; Cojocaru, Svetlana; Ufnarovski, Victor The computer algebra package Bergman: Current state. (English) Herzog, Jürgen (eded.) et al., commutative algebra, singularities and computer algebra. Proceedings of the NATO advanced research workshop, Sinaia, Romania, September 17–22, 2002. Dordrecht: Kluwer Academic Publishers. NATO Sci. Ser. II, Math. Phys. Chem. 115, 75–100 (2003).

    Google Scholar 

  16. G.M. Bergman, The Diamond Lemma for ring theory. Adv. in Math., 29(1978), 178–218.

    Article  MathSciNet  Google Scholar 

  17. Belyaev, V. Ya. Subrings of finitely presented associative rings. (English) Algebra Logika 17, 627–638 (1978).

    MATH  MathSciNet  Google Scholar 

  18. Bokut, L.A., Embedding of Lie algebras into algebraically closed Lie algebras. (Russian) Algebra Logika 1, No.2, 47–53 (1962).

    MATH  MathSciNet  Google Scholar 

  19. Bokut, L.A., Bases of free poly-nilpotent Lie algebras (Russian) Algebra Logika 2, No. 4, 13–19 (1963).

    MATH  MathSciNet  Google Scholar 

  20. L.A. Bokut, On a property of the Boone groups. Algebra i Logika Sem., 5 (1966), 5, 5–23; 6 (1967), 1, 15–24.

    MATH  MathSciNet  Google Scholar 

  21. L.A. Bokut, On Novikov’s groups. Algebra i Logika Sem., 6 (1967), 1, 25–38.

    Google Scholar 

  22. Bokut, L.A., Degrees of insolvability of the conjugacy problem for finitely presented groups (Russian) Algebra Logika 7, No.5, 4–70; No. 6, 4–52 (1968).

    Google Scholar 

  23. L.A. Bokut, Groups of fractions of multiplication semigroups of certain rings. I–III, Malcev’s problem. Sibir. Math. J., 10, 2, 246–286; 4, 744–799, 4, 800–819; 5, 965–1005.

    Google Scholar 

  24. L.A. Bokut, Unsolvability of the word problem, and subalgebras of finitely presented Lie algebras. Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1173–1219.

    MATH  MathSciNet  Google Scholar 

  25. L.A. Bokut, Imbeddings into simple associative algebras. Algebra i Logika Sem., 15 (1976), 117–142.

    MATH  MathSciNet  Google Scholar 

  26. Bokut’, L.A., On algebraically closed and simple Lie algebras (Russian, English) Proc. Steklov Inst. Math. 148, 30–42 (1978).

    MathSciNet  Google Scholar 

  27. L.A. Bokut, Yuqun Chen, Gröbner Shirshov bases for Lie algebras: after A.I. Shirshov. SEA Bull Math., 31 (2007), 811–831.

    MathSciNet  Google Scholar 

  28. L.A. Bokut, Y. Fong, W.-F. Ke, Composition Diamond Lemma for associative conformal algebras. J. Algebra, 272(2004), 739–774.

    Article  MATH  MathSciNet  Google Scholar 

  29. L.A. Bokut, Y. Fong, W.-F. Ke, P.S. Kolesnikov, Gröbner and Gröbner-Shirshov bases in Algebra and Conformal algebras. Fundamental and Applied Mathematics, 6(2000), N3, 669–706 (in Russian).

    MATH  MathSciNet  Google Scholar 

  30. L.A. Bokut, P.S. Kolesnikov, Gröbner-Shirshov bases: From Incipient to Nowdays, Proceedings of the POMI, 272(2000), 26–67.

    Google Scholar 

  31. L.A. Bokut, P.S. Kolesnikov, Gröbner-Shirshov bases: conformal algebras and pseudoalgebras, Journal of Mathematicfal Sciences, 131(5)(2005), 5962–6003.

    Article  MATH  MathSciNet  Google Scholar 

  32. L.A. Bokut, and G.P. Kulin, Algorithmic and combinatorial algebra. Mathematics and its Applications, 255, Kluwer Academic Publishers Group, Dordrecht, 1994.

    MATH  Google Scholar 

  33. L.A. Bokut, K.P. Shum, Relative Gröbner-Shirshov bases for algebras and groups. Algebra i Analiz 19 (2007), no. 6, 1–21.

    MathSciNet  Google Scholar 

  34. Bourbaki, N. Elements de mathematique. Fasc. XXXVII: Groupes et algèbres de Lie. Chap. II: Algèbres de Lie libres. Chap. III: Groupes de Lie. (French) Actualites scientifiques et industrielles 1349. Paris: Hermann. 320 p. (1972).

    Google Scholar 

  35. B. Buchberger, An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal. (German). Ph.D. thesis, University of Innsbruck, Austria, 1965.

    Google Scholar 

  36. B. Buchberger, An algorithmical criteria for the solvability of algebraic systems of equations (German). Aequationes Math. 4 (1970), 374–383.

    Article  MATH  MathSciNet  Google Scholar 

  37. Cartier, P. Remarques sur le theore me de Birkhoff-Witt. (French) Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III Ser. 12, 1–4 (1958).

    MATH  MathSciNet  Google Scholar 

  38. K.T. Chen, R.H. Fox, and R.C. Lyndon, Free differential calculus, IV: the quotient groups of the lower central series. Annals of Mathematics 68 (1958), pp. 81–95.

    Article  MathSciNet  Google Scholar 

  39. Yuqun Chen, Wenshu Chen and Runai Luo, Word problem for Novikov’s and Boone’s group via Gröbner-Shirshov bases, SEA Bull Math., 32(2008), 5.

    MathSciNet  Google Scholar 

  40. E.S. Chibrikov, On free Lie conformal algebras. Vestnik Novosib. State Univ., Ser. “Math, Mech, Inform.”, 4 (2004), No. 1, 65–86 (in Russian).

    Google Scholar 

  41. Chibrikov, E.S., A right normed basis for free Lie algebras-and Lyndon-Shirshov words. J. Algebra 302, No. 2, 593–612 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  42. Cohn, P.M. Universal algebra. (English) Harper’s Series in Modern Mathematics. New York-Evanston-London: Harper and Row, Publishers 1965, XV, 333p. (1965).

    Google Scholar 

  43. Cohn, P.M., A remark on the Birkhoff-Witt theorem. English J. Lond. Math. Soc. 38, 197–203 (1963).

    Article  MATH  Google Scholar 

  44. Cohn, P.M. Sur le critère de Friedrichs pour les commutateurs dans une algèbre asociative libre. Comptes Rendus Acad. Science Paris, 239, 743–745 (1954).

    MATH  Google Scholar 

  45. Friedrichs, K.O. Mathematical aspects of the quantum theory of fields. V. (English) Commun. Pure Appl. Math. 6, 1–72 (1953).

    Article  MATH  MathSciNet  Google Scholar 

  46. Gainov, A.T., Free commutative and free anticommutative products of algebras. (Russian) Sib. Mat. Zh. 3, 805–833 (1962).

    MathSciNet  Google Scholar 

  47. Gerasimov, V.N., Distributive lattices of subspaces and the equality problem for algebras with a single relation. Algebra Logic 15 (1976), 238–274 (1977); translation from Algebra Logika 15, 384–435 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  48. Gerdt, V.P.; Kornyak, V.V., Program for constructing a complete system of relations, basis elements, and commutator table for finitely presented Lie algebras and super-algebras. (English. Russian original) Program. Comput. Softw. 23, No. 3, 164–172 (1997); translation from Programmirovanie 1997, No.3, 58–71 (1997).

    MATH  MathSciNet  Google Scholar 

  49. P. Hall, A contribution to the theory of groups of prime power order. Proc. London Math. Soc. Ser. 2, 36 (1933), pp. 29–95.

    Article  MATH  Google Scholar 

  50. M. Hall, A basis for free Lie rings and higher commutators in free groups. Proc. Amer. Math. Soc. 3 (1950), pp. 575–581.

    Article  Google Scholar 

  51. G. Higman, B.H. Neumann, H. Neumann, Embedding theorems for groups. J. London Math. Soc. 24 (1949) 247–254.

    Article  MathSciNet  Google Scholar 

  52. Higman, G. Subgroups of finitely presented groups. (English) Proc. R. Soc. Lond., Ser. A 262, 455–475 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  53. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II. Ann. Math., 79(2) (1964), pp. 109–203, 205–326.

    Article  MathSciNet  Google Scholar 

  54. S.-J. Kang, K.-H. Lee, Gröbner-Shirshov bases for irreducible sl n+1 -modules, Journal of Algebra, 232 (2000), 1–20.

    Article  MATH  MathSciNet  Google Scholar 

  55. Knuth, D.E.; Bendix, P.B., Simple word problems in universal algebras. Comput. Probl. abstract Algebra, Proc. Conf. Oxford 1967, 263–297 (1970).

    Google Scholar 

  56. D. Kozybaev, L. Makar-Limanov, U. Umirbaev, The Freiheitssatz and the automorphisms of free right-symmetric algebras, Asian-European. J. Math. 1 (2008), 2, 243–252.

    MATH  MathSciNet  Google Scholar 

  57. G.P. Kukin, On the word problem for Lie algebras. Sibirsk. Math. Zh. 18 (1977), 1194–1197.

    MATH  MathSciNet  Google Scholar 

  58. Kukin, G.P. Subalgebras of a free Lie sum of Lie algebras with an amalgamated subalgebra. Algebra Logic 11 (1972), 59–86.

    MATH  MathSciNet  Google Scholar 

  59. Kukin, G.P. On the Cartesian subalgebras of a frèe Lie sum of Lie algebras. Algebra Logika 9, 701–713 (1970).

    MathSciNet  Google Scholar 

  60. Kurosh, A., Nonassociative free algebras and free products of algebras. (Russian. English summary) Mat. Sb., N. Ser. 20(62), 239–262 (1947).

    MathSciNet  Google Scholar 

  61. Kurosch, A. Die Untergruppen der freien Produkte von beliegiben Gruppen (German) Math. Ann. 109, 647–660 (1934).

    Article  MathSciNet  Google Scholar 

  62. Lazard, M. Groupes, anneaux de Lie et problème de Burnside. C.I.M.E., Gruppi, Anelli di Lie e Teoria della Coomologia 60 p. (1960). The same in: Instituto Matemático dell’Universita di Roma (1960).

    Google Scholar 

  63. Lothaire, M. Combinatorics on words. Foreword by Roger Lyndon. Encyclopedia of Mathematics and Its Applications, Vol. 17. Reading, Massachusetts, etc.: Addison-Wesley Publishing Company, Advanced Book Program/World Science Division. XIX, 238 p. (1983).

    Google Scholar 

  64. Lothaire, M. Combinatorics on words. Foreword by Roger Lyndon. 2nd ed. Encyclopedia of Mathematics and Its Applications. 17: Cambridge: Cambridge University Press. xvii, 238 p. (1997).

    MATH  Google Scholar 

  65. Lyndon, R.C. On Burnside’s problem. Trans. Am. Math. Soc. 77, 202–215 (1954).

    Article  MATH  MathSciNet  Google Scholar 

  66. Lyndon, R.C. A theorem of Friedrichs. Mich. Math. J. 3, 27–29 (1956).

    MATH  MathSciNet  Google Scholar 

  67. Magnus, W. Über diskontinuierliche Gruppen mit einer definierenden Relation (Der Freiheitssatz). J. Reine Angew. Math. 163(1930), pp. 141–165.

    MATH  Google Scholar 

  68. Magnus, W. Das Identitätsproblem für Gruppen mit einer definierenden Relation. (German) Math. Ann. 106, 295–307 (1932).

    Article  MathSciNet  Google Scholar 

  69. W. Magnus, Über Beziehungen zwischen höheren Kommutatoren. J. Reine Angew. Math 177(1937), pp. 105–115.

    Google Scholar 

  70. Makar-Limanov, L. Algebraically closed skew fields. J. Algebra 93, 117–135 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  71. Makar-Limanov, L.G. On algebras with one relation. Usp. Mat. Nauk 30, No.2(182), 217 (1975).

    MATH  MathSciNet  Google Scholar 

  72. Malcev, A.I., On representation of nonassociative rings. Uspehi Mat. Nauk N.S. 7 (1952), 181–185.

    MathSciNet  Google Scholar 

  73. Matiyasevich, Yu.V. Enumerable sets are diophantine. Russian original) Sov. Math., Dókl. 11, 354–358 (1970); translation from Dokl. Akad. Nauk SSSR 191, 279–282 (1970).

    MATH  Google Scholar 

  74. Mikhalev, A.A., The junction lemma and the equality problem for color Lie superalgebras. Vestnik. Moskov. Univ. Ser. 1. Mat. Mekh. 1989, no. 5, 88–91. English translation: Moscow Univ. Math. Bull. 44 (1989), 87–90.

    Google Scholar 

  75. A.A. Mikhalev, Shirshov’s composition techniques in Lie superalgbras (non-commutative Gröbner bases). Trudy Sem. Petrovsk. 18 (1995), 277–289.

    MATH  Google Scholar 

  76. A.A. Mikhalev and A.A. Zolotykh, Combinatorial Aspects of Lie Superalgebras. CRC Press, Boca Raton, New York, 1995.

    MATH  Google Scholar 

  77. V.N. Latyshev, Combinatorial Theory of Rings. Standard Bases. Moscow State Univ. Publ. House, Moscow, 1988.

    Google Scholar 

  78. T. Mora, Gröbner bases for non-commutative polynomial rings. Lecture Notes in Comput. Sci. 229 (1986), 353–362.

    MathSciNet  Google Scholar 

  79. C. Reutenauer. Free Lie algebras. London Mathematical Society Monographs. New Series, 7. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993.

    MATH  Google Scholar 

  80. C. Reutenauer. Dimensions and characters of the derived series of the free Lie algebra. In M. Lothaire, Mots, Melanges offerts a M.-P. Schützenberger, pp. 171–184. Hermes, Paris.

    Google Scholar 

  81. Shelah, Saharon On a problem of Kurosh, Jonsson groups, and applications. (English) Word problems II, Stud. Logic Found. Math. Vol. 95, 373–394 (1980).

    Google Scholar 

  82. Viennot, Gerard. Algèbres de Lie libres et monoides libres. Bases des algèbres de Lie libres et factorisations des monoides libres. (French) Lecture Notes in Mathematics. 691. Berlin-Heidelberg-New York: Springer-Verlag. 124 p. (1978)

    Google Scholar 

  83. E. Witt, Treue Darstellungen Lieschen Ringe. J. Reine Angew. Math. 177(1937), pp. 152–160.

    Google Scholar 

  84. E. Witt, Subrings of free Lie rings Math. Zeit., 64(1956), 195–216.

    MATH  MathSciNet  Google Scholar 

  85. V.A. Ufnarovski, Combinatorial and Asymptotic Methods in Algebra. Encyclopaedia Math. Sci. 57 (1995), 1–196.

    Google Scholar 

  86. A.I. Zhukov, Reduced systems of defining relations in non-associative algebras Mat. Sb., N. Ser., 27(69) (1950), 267–280.

    Google Scholar 

  87. Zolotykh, A.A.; Mikhalev, A.A. Algorithms for construction of standard Gröbner-Shirshov bases of ideals of free algebras over commutative rings. (English. Russian original) Program. Comput. Softw. 24, No.6, 271–272 (1998); translation from Programmirovanie 1998, No.6, 10–11 (1998).

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag, P.O. Box 133, CH-4010 Basel, Switzerland

About this chapter

Cite this chapter

Bokut, L.A. (2009). On Shirshov’s Papers for Lie Algebras. In: Bokut, L., Shestakov, I., Latyshev, V., Zelmanov, E. (eds) Selected Works of A.I. Shirshov. Contemporary Mathematicians. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8858-4_21

Download citation

Publish with us

Policies and ethics