Advertisement

On the Theory of Projective Planes

  • A. I. Shirshov
  • A. A. Nikitin
Part of the Contemporary Mathematicians book series (CM)

Abstract

In 1976, in the special course on Projective Planes given at Novosibirsk State University, and later in 1977, in the report on Projective Planes given at the Fourteenth All-Union Algebra Conference, A.I. Shirshov presented the concept of a projective plane as a partial algebraic system. This approach allowed the formulation of a number of new problems, together with a new viewpoint on known results and problems in the theory of projective planes. In the present work, we discuss part of the results contained in the special course and in the report, and also some further developments.

Keywords

Natural Number Projective Plane Satisfying Condition Inductive Step Regular Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Giovagnoli, Sulla rappresentazione di un piano libero mediante una classe di simboli, Rend. Mat. e Appl. 25, 3–4 (1966) 427–438.MATHMathSciNetGoogle Scholar
  2. [2]
    M. Hall, Projective planes, Trans. Amer. Math. Soc. 54 (1943) 229–277.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    D.R. Hughes and F.C. Piper, Projective Planes, Graduate Texts in Mathematics 6, Springer-Verlag, New York-Berlin, 1973.MATHGoogle Scholar
  4. [4]
    N.L. Johnson, Homomorphisms of free planes, Math. Z. 125 (1972) 255–263.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    K.H. Kim and F.W. Roush, A universal algebra approach to free projective planes, Aequationes Math. 19, 1 (1979) 48–52.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    L.I. Kopeikina, Free decompositions of projective planes, Izv. Akad. Nauk SSSR Ser. Mat. 9, 1 (1945) 495–526.MATHMathSciNetGoogle Scholar
  7. [7]
    R. Magari, Su una classe di simboli atta a rappresentare gli elementi di un piano grafico e su un teorema di riduzione a forma normale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 33, 1 (1962) 37–44.MATHMathSciNetGoogle Scholar
  8. [8]
    G. Pickert, Projektive Ebenen, Die Grundlehren der mathematischen Wissenschaften LXXX, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955.MATHGoogle Scholar
  9. [9]
    G. Pickert, Projektive Ebenen, Zweite Auflage, Die Grundlehren der Mathematischen Wissenschaften 80, Springer-Verlag, Berlin-New York, 1975.Google Scholar
  10. [10]
    L.A. Skornyakov, Projective planes, Uspekhi Mat. Nauk 6, 6 (1951) 112–154.MATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag, P.O. Box 133, CH-4010 Basel, Switzerland 2009

Authors and Affiliations

  • A. I. Shirshov
  • A. A. Nikitin

There are no affiliations available

Personalised recommendations