The Spin pp 159-193 | Cite as

Magnetic Resonance Imaging: From Spin Physics to Medical Diagnosis

  • Pierre-Jean Nacher
Part of the Progress in Mathematical Physics book series (PMP, volume 55)


Two rather similar historical evolutions are evoked, each one originating in fundamental spin studies by physicists, and ending as magnetic resonance imaging (MRI), a set of invaluable tools for clinical diagnosis in the hands of medical doctors. The first one starts with the early work on nuclear magnetic resonance, the founding stone of the usual proton-based MRI, of which the basic principles are described. The second one starts with the optical pumping developments made to study the effects of spin polarization in various fundamental problems. Its unexpected outcome is a unique imaging modality, also based on MRI, for the study of lung physiology and pathologies.


Magnetic Resonance Image Nuclear Magnetic Resonance Single Photon Emission Compute Tomography Chronical Obstructive Pulmonary Disease Patient Nuclear Magnetic Resonance Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I.I. Rabi, S. Millman, P. Kusch, and J. R. Zacharias, A new method of measuring nuclear magnetic moments, Phys. Rev. 53 (1938), 318; I.I. Rabi, S. Millman, P. Kusch, and J. R. Zacharias, The molecular beam resonance method for measuring nuclear magnetic moments. The magnetic moments of Li6, Li7 and F19, Phys.Rev. 55 (1939), 526.CrossRefADSGoogle Scholar
  2. [2]
    E.M. Purcell, H.C. Torrey, and R.V. Pound, Resonance absorption by nuclear magnetic moments in a solid, Phys. Rev. 69 (1946), 37.CrossRefADSGoogle Scholar
  3. [3]
    F. Bloch, W. W. Hansen, and M. Packard, Nuclear induction, Phys. Rev. 69 (1946), 127; F. Bloch, W. W. Hansen, and M. Packard, The nuclear induction experiment, Phys. Rev. 70 (1946), 474.CrossRefADSGoogle Scholar
  4. [4]
    F. Bloch, Nuclear induction, Phys. Rev. 70 (1946), 460.CrossRefADSGoogle Scholar
  5. [5]
    H.C. Torrey, Transient nutations in nuclear magnetic resonance, Phys. Rev. 76 (1949), 1059.MATHCrossRefADSGoogle Scholar
  6. [6]
    E.L. Hahn, Nuclear induction due to free Larmor precession, Phys. Rev. 77 (1950), 297.CrossRefADSGoogle Scholar
  7. [7]
    E.L. Hahn, Spin echoes, Phys. Rev. 80 (1950), 580.MATHCrossRefADSGoogle Scholar
  8. [8]
    J.T. Arnold, S.S. Dharmatti, and M.E. Packard, Chemical effects on nuclear induction signals from organic compounds, J. Chem. Phys. 19 (1951), 507.CrossRefADSGoogle Scholar
  9. [9]
    C.J. Gorter and L.J.F. Broer, Negative result of an attempt to observe nuclear magnetic resonance in solids, Physica 9 (1942), 591.CrossRefADSGoogle Scholar
  10. [10]
    R.J. Singer, Blood-flow rates by NMR measurements, Science 130 (1959), 1652.CrossRefADSGoogle Scholar
  11. [11]
    J.A. Jackson and W.H. Langham, Whole-body NMR spectrometer, Rev. Sci. Instrum. 39 (1968), 510.CrossRefADSGoogle Scholar
  12. [12]
    P.C. Lauterbur, Image formation by induced local interactions: examples of employing nuclear magnetic resonance, Nature 242 (1973), 190.CrossRefADSGoogle Scholar
  13. [13]
    A.N. Garroway, P.K. Grannell, and P. Mansfield, Image formation in NMR by a selective irradiative process, J. Phys. C 7 (1974), L457.CrossRefADSGoogle Scholar
  14. [14]
    P. Mansfield and A.A. Maudsley, Planar spin imaging by NMR, J. Magn. Reson. 27 (1977), 101.Google Scholar
  15. [15]
    R.R. Ernst and W.A. Anderson, Application of Fourier transform spectroscopy to magnetic resonance, Rev. Sci. Instrum. 37 (1966), 93.CrossRefADSGoogle Scholar
  16. [16]
    A. Kumar, D. Welti, and R.R. Ernst, NMR-Fourier-Zeugmatography, J. Magn. Reson. 18 (1975), 69.Google Scholar
  17. [17]
    W.A. Edelstein, J.M.S. Hutchison, G. Johnson and T.W. Redpath, Spin warp NMR imaging and applications to human whole-body imaging, Phys. Med. Biol. 25 (1980), 751.CrossRefGoogle Scholar
  18. [19]
    S. Gleyzes, et al., Quantum jumps of light recording the birth and death of a photon in a cavity, Nature 446 (2007), 297.CrossRefADSGoogle Scholar
  19. [20]
    E.D. Pracht, J.F.T Arnold, T.T. Wang, et al., Oxygen-enhanced proton imaging of the human lung using T2*, Magn. Reson. Med. 53 (2005), 1193.CrossRefGoogle Scholar
  20. [21]
    A. Kastler, Optical methods of atomic orientation and of magnetic resonance, J. Opt. Soc. Am. 47 (1957), 460.CrossRefADSGoogle Scholar
  21. [22]
    B. Cagnac, J. Brossel and A. Kastler, RMN du mercure Hg-201 aligné par pompage optique, C.R Acad. Sci. 246 (1958), 1827.Google Scholar
  22. [23]
    J. Jeener, Equivalence between the “classical” and the “Warren” approaches for the effects of long range dipolar couplings in liquid NMR, J. Chem. Phys. 112 (2000), 5091.CrossRefADSGoogle Scholar
  23. [24]
    D.I. Hoult and P.C. Lauterbur, The sensitivity of the zeugmatographic experiment involving human samples, J. Magn. Reson. 34 (1979), 425.Google Scholar
  24. [25]
    J. Bittoun, B. Querleux and L. Darrasse, Advances in MR imaging of the skin, NMR Biomed. 19 (2006), 723; L. Darrasse and J.-C. Ginefri, Perspectives with cryogenic RF probes in biomedical MRI, Biochimie 85 (2003), 915.CrossRefGoogle Scholar
  25. [26]
    M. Mossle, et al., SQUID-detected in vivo MRI at microtesla magnetic fields, IEEE Transactions on Applied Superconductivity 15 (2005), 757.CrossRefGoogle Scholar
  26. [27]
    D. Budker and M. Romalis, Optical magnetometry, Nature Physics 3 (2007), 227.CrossRefADSGoogle Scholar
  27. [28]
    H.J. Mamin, M. Poggio, C.L. Degen and D. Rugar, Nuclear magnetic resonance imaging with 90-nm resolution, Nature Nanotechnology 2 (2007), 301.CrossRefADSGoogle Scholar
  28. [29]
    J. Pauly, P. Le Roux, D. Nishimura and A. Macovski, Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm, IEEE Trans. Med. Imaging 10 (1991), 53.CrossRefGoogle Scholar
  29. [30]
    G. McGibney, M.R. Smith, S.T. Nichols and A. Crawley, Quantitative evaluation of several partial Fourier reconstruction algorithms used in MRI, Magn. Reson. Med. 30 (1993), 5159.CrossRefGoogle Scholar
  30. [31]
    D.K. Sodickson and W.J. Manning, Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays, Magn. Reson. Med. 38 (1997), 1603.CrossRefGoogle Scholar
  31. [32]
    K.P. Pruessmann, M. Weiger, M.B. Scheidegger and P. Boesiger, SENSE: Sensitivity encoding for fast MRI, Magn. Reson. Med. 42 (1999), 2962.CrossRefGoogle Scholar
  32. [33]
    M. Lustig, D. Donoho and J.M. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magn. Reson. Med., in press, DOI: 10.1002/mrm.21391 (2007).Google Scholar
  33. [34]
    M. Goldman, H. Johannesson, O. Axelsson and M. Karlsson, Hyperpolarization of 13C through order transfer from parahydrogen: a new contrast agent for MRI, Magn. Reson. Imaging. 23 (2005), 153.CrossRefGoogle Scholar
  34. [35]
    S. Mansson, et al., 13C imaging-a new diagnostic platform, Eur Radiol. 16 (2006), 57.CrossRefGoogle Scholar
  35. [36]
    M.S. Albert, G.D. Cates, B. Driehuys, et al., Biological MRI using laser-polarized 129Xe, Nature 370 (1994), 199.CrossRefADSGoogle Scholar
  36. [37]
    J.R. MacFall, H.C. Charles, R.D. Black, et al., Human lung air spaces: potential for MRI with hyperpolarized 3He, Radiology 200 (1996), 553.Google Scholar
  37. [38]
    H.U. Kauczor, D. Hofmann, K.F. Kreitner, et al., Normal and abnormal pulmonary ventilation: Visualization at hyperpolarized 3He MRI, Radiology 201 (1996), 564.Google Scholar
  38. [39]
    G.K. Walters and W.M. Fairbank, Phase separation in 3He-4He solutions, Phys. Rev. 103 (1956), 262.CrossRefADSGoogle Scholar
  39. [40]
    A. Kastler, Méthodes optiques d’étude de la résonance magnétique, Physica, 17 (1951), 191.CrossRefADSGoogle Scholar
  40. [41]
    M.A. Bouchiat, T.R. Carver and C.M. Varnum, Nuclear Polarization in He3 Gas Induced by Optical Pumping and Dipolar Exchange, Phys. Rev. Lett. 5 (1960), 373.CrossRefADSGoogle Scholar
  41. [42]
    W. Happer, Optical Pumping, Rev. Mod. Phys. 44 (1972), 169.CrossRefADSGoogle Scholar
  42. [43]
    F.D. Colegrove, L.D. Schearer and G.K. Walters, Polarization of He3 gas by optical pumping, Phys. Rev. 132 (1963), 2561.CrossRefADSGoogle Scholar
  43. [44]
    T.G. Walker and W. Happer, Spin-exchange optical pumping of noble-gas nuclei, Rev. Mod. Phys. 69 (1997), 629.CrossRefADSGoogle Scholar
  44. [45]
    D. Bear, et al., Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser, Phys. Rev. Lett. 85 (2000), 5038 — erratum in Phys. Rev. Lett. 89, 209902.CrossRefADSGoogle Scholar
  45. [46]
    G.L. Jones, et al., Test of He-3-based neutron polarizers at NIST, Nuc. Instr. Meth. A 440 (2000), 772.CrossRefADSGoogle Scholar
  46. [47]
    T. Chupp and S. Swanson, Adv. At. Mol. Opt. Phys. 45 (2001), 51.Google Scholar
  47. [48]
    I.C. Ruset, S. Ketel and F.W. Hersman, Optical pumping system design for large production of hyperpolarized 129Xe, Phys. Rev. Lett. 96 (2006), 053002.CrossRefADSGoogle Scholar
  48. [49]
    W.C. Chen, T.R. Gentile, T.G. Walker, et al., Spin-exchange optical pumping of He-3 with Rb-K mixtures and pure K, Phys. Rev. A 75 (2007), 013416.CrossRefADSGoogle Scholar
  49. [50]
    P.J. Nacher and M. Leduc, Optical pumping in 3He with a laser, J. Phys. (Paris) 46 (1985), 2057.Google Scholar
  50. [51]
    G. Tastevin, S. Grot, E. Courtade, S. Bordais and P.-J. Nacher, A broadband ytterbium-doped tunable fiber laser for 3He optical pumping at 1083 nm, Applied Physics B 78 (2004), 145.CrossRefGoogle Scholar
  51. [52]
    M. Leduc, S.B. Crampton, P.J. Nacher and F. Laloe, Nuclear polarization of gaseous 3He by optical pumping, Nuclear Sci. App. 1 (1983), 1.Google Scholar
  52. [53]
    P.-J. Nacher, E. Courtade, M. Abboud, A. Sinatra, G. Tastevin and T. Dohnalik, Optical pumping of helium-3 at high pressure and magnetic field, Acta Phys. Polon. B 33 (2002), 2225. Online at Scholar
  53. [54]
    M. Abboud, A. Sinatra, X. Maitre, G. Tastevin and P.-J. Nacher, High nuclear polarization of 3He at low and high pressure by metastability exchange optical pumping at 1.5 Tesla, Europhys. Lett. 68 (2004), 480.CrossRefADSGoogle Scholar
  54. [55]
    A. Nikiel, T. Palasz, M. Suchanek, et al., Metastability exchange optical pumping of 3He at high pressure and high magnetic field for medical applications, Eur. Phys. J. Special Topics 144 (2007), 255.CrossRefADSGoogle Scholar
  55. [56]
    H.H. Mc Adams, Dynamic nuclear polarization of liquid 3He by optical pumping, Phys. Rev. 170 (1968), 276.CrossRefADSGoogle Scholar
  56. [57]
    R. Barbe, F. Laloe and J. Brossel, Very long nuclear 3He nuclear relaxation times at 4K using cryogenic coatings, Phys. Rev. Lett. 34 (1975), 1488.CrossRefADSGoogle Scholar
  57. [58]
    G. Tastevin, P.-J. Nacher, L. Wiesenfeld, M. Leduc and F. Laloe, Obtaining polarized liquid 3He from optically oriented gas, J. Phys. (Paris) 49 (1988), 1.Google Scholar
  58. [59]
    P.J. Nacher, G. Tastevin, M. Leduc, S.B. Crampton and F. Laloe, Spin rotation effects and spin waves in gaseous polarized 3He, J. Phys. Lett. (Paris) 45 (1984), L–441.CrossRefGoogle Scholar
  59. [60]
    M. Leduc, P.J. Nacher, D.S. Betts, J.M. Daniels, G. Tastevin and F. Laloe, Nuclear polarization and heat conduction changes in gaseous 3He, Europhys. Lett. 4 (1987), 59.CrossRefADSGoogle Scholar
  60. [61]
    M.E. Hayden, E. Baudin, G. Tastevin and P.-J. Nacher, NMR time-reversal as a probe of incipient turbulent spin dynamics, Phys. Rev. Lett. 99 (2007), 137602.CrossRefADSGoogle Scholar
  61. [62]
    R.S. Timsit, J.M. Daniels, E.I. Dennig, A.C.K. Kiang and A.D. May, An experiment to compressed polarized 3He gas, Bull. Am. Phys. Soc. 15 (1970), 761.Google Scholar
  62. [63]
    J.M. Daniels, L.D. Schearer, M. Leduc and P.-J. Nacher, Polarizing 3He nuclei with neodymium La1-x Ndx Mg Al11 O19 lasers, J.O.S.A. B 4 (1987), 1133.CrossRefGoogle Scholar
  63. [64]
    G. Eckert, W. Heil, M. Meyerhoff, et al., A dense polarized 3He target based on compression of optically pumped gas, Nucl. Instr. Meth. Phys. Res. A 320 (1992), 53.CrossRefADSGoogle Scholar
  64. [65]
    J. Becker, J. Bermuth, M. Ebert, et al., Interdisciplinary experiments with polarized He-3, Nuc. Instr. Meth. Phys. Res. A 402 (1998), 327.CrossRefADSGoogle Scholar
  65. [66]
    D. Rohe, P. Bartsch, D. Baumann, et al., Measurement of the neutron electric form factor Gen at 0.67 (GeV/c)2 via 3He→(e→,e’ n), Phys. Rev. Lett. 83 (1999), 4257.CrossRefADSGoogle Scholar
  66. [67]
    D.S. Hussey, D.R. Rich DR, A.S. Belov, et al., Polarized He-3 gas compression system using metastability-exchange optical pumping, Rev. Sci. Instr. 76 (2005), 053503.CrossRefADSGoogle Scholar
  67. [68]
    J. Choukeife, X. Maitre, P.J. Nacher and G. Tastevin, On-site production of hyper-polarised helium-3 gas for lung MRI, Abstracts ISSN 1524-6965 (2003), 1391.Google Scholar
  68. [69]
    K.H. Andersen, R. Chung, V. Guillard, et al., First results from Tyrex, the new polarized-He-3 filling station at ILL, Physica B 356 (2005), 103.CrossRefADSGoogle Scholar
  69. [70]
    E.J.R. van Beek, J. Schmiedeskamp, J.M. Wild, et al., Hyperpolarized 3-helium MR imaging of the lungs: testing the concept of a central production facility, Eur. Radiol. 13 (2003), 2583.CrossRefGoogle Scholar
  70. [71]
    M. Batz, S. Baessler, W. Heil, et al., He-3 spin filter for neutrons, J. Res. Natl. Inst. Stand. Technol. 110 (2005), 293.Google Scholar
  71. [72]
    A.K. Petoukhov, K.H. Andersen, D. Jullien, et al., Recent advances in polarised He-3 spin filters at the ILL, Physica B 385 (2006), 1146.CrossRefADSGoogle Scholar
  72. [73]
    J. Schmiedeskamp, W. Heil, E.W. Otten, et al., Paramagnetic relaxation of spin polarized He-3 at bare glass surfaces Part I, Eur. Phys. J. D 38 (2006), 427.CrossRefADSGoogle Scholar
  73. [74]
    A. Deninger, W. Heil, E.W. Otten, et al., Paramagnetic relaxation of spin polarized He-3 at coated glass walls Part II, Eur. Phys. J. D 38 (2006), 439.CrossRefADSGoogle Scholar
  74. [75]
    J. Schmiedeskamp, H.J. Elmers, W. Heil, et al., Relaxation of spin polarized He-3 by magnetized ferromagnetic contaminants Part III, Eur. Phys. J. D 38 (2006), 445.CrossRefADSGoogle Scholar
  75. [76]
    B. Saam, W. Happer and H. Middleton, Nuclear relaxation of 3He in the presence of O2, Phys. Rev. A 52 (1995), 862.CrossRefADSGoogle Scholar
  76. [77]
    L. de Rochefort, A. Vignaud, X. Maitre, et al., Influence of lung filling on T*2 values in human at 1.5 T with hyperpolarised 3 He, Abstracts ISSN 1545-4436 (2004), 2724.Google Scholar
  77. [78]
    E. Durand, G. Guillot, L. Darrasse, et al., CPMG measurements and ultrafast imaging in human lungs with hyperpolarized helium-3 at low field (0.1 T), Magn. Reson. Med. 47 (2002), 75.CrossRefGoogle Scholar
  78. [79]
    C.P. Bidinosti, J. Choukeife, G. Tastevin, A. Vignaud and P.-J. Nacher, MRI of the lung using hyperpolarized He-3 at very low magnetic field (3 mT), Magn. Reson. Mater. Phy. 16 (2004), 255.CrossRefGoogle Scholar
  79. [80]
    C.P. Bidinosti, J. Choukeife, P.-J. Nacher and G. Tastevin, In-vivo NMR of hyperpolarized 3He in the human lung at very low magnetic fields, J. Magn. Reson. 162 (2003), 122.CrossRefADSGoogle Scholar
  80. [81]
    R.W. Mair, M.I. Hrovat, S. Patz, et al., Orientation-dependent 3He lung imaging in an open access, very-low-field human MRI system, Magn. Reson. Med. 53 (2005), 745.CrossRefGoogle Scholar
  81. [82]
    A.M. Oros and N.J. Shah, Hyperpolarized xenon in NMR and MRI, Phys. Med. Biol. 49 (2004), R105.CrossRefGoogle Scholar
  82. [85]
    T. Stavngaard, L. Vejby Sogaard, J. Mortensen, et al., Hyperpolarised 3He MRI and 81 m Kr SPECT in chronic obstructive pulmonary disease, Eur. J. Nucl. Med. Mol. Imaging 32 (2005), 448.CrossRefGoogle Scholar
  83. [86]
    J.M. Wild, M.N.J. Paley, L. Kasuboski, et al., Dynamic radial projection MRI of inhaled hyperpolarized 3He gas, Magn. Reson. Med. 49 (2003), 991.CrossRefGoogle Scholar
  84. [87]
    E.J.R van Beek, J.M. Wild, H.U. Kauczor, et al., Functional MRI of the lung using hyperpolarized 3-helium gas, J. Magn. Reson. Imaging, 20 (2004), 540.CrossRefGoogle Scholar
  85. [88]
    F. Lehmann, B. Eberle, K. Markstaller, et al., Ein Auswerteprogramm zur Quantitativen Analyse von Messungen des Alveolären Sauerstoffpartialdrucks (paO2) mit der Sauerstoff sensitiven 3He-MR-Tomographie, Fortschr Roentgenstr 176 (2004), 1390.CrossRefGoogle Scholar
  86. [89]
    A.J. Deninger, B. Eberle, J. Bermuth, et al., Assessment of a single-acquisition imaging sequence for oxygen-sensitive 3He-MRI, Magn. Reson. Med. 47 (2002), 105114.CrossRefGoogle Scholar
  87. [90]
    M. Salerno, E.E. de Lange, T.A. Altes, et al., Emphysema: hyperpolarized helium 3 diffusion MR Imaging of the lungs compared with spirometric indexes — Initial experience, Radiology 222 (2002), 252.CrossRefGoogle Scholar
  88. [91]
    T.A. Altes, J. Mata, E.E. de Lange, J.R. Brookeman and J.P. Mugler III, Assessment of lung development using hyperpolarized helium-3 diffusion MR Imaging, J. Magn. Reson. Imaging 24 (2006), 1277.CrossRefGoogle Scholar
  89. [92]
    T.A. Altes, J. Mata, D.K. Froh, A. Paget-Brown, E.E. de Lange and J.P. Mugler, Abnormalities of lung structure in children with bronchopulmonary dysplasia as assessed by diffusion of hyperpolarized helium-3 MRI, Proc. Intl. Soc. Mag. Reson. Med. 14 (2006), 86.Google Scholar
  90. [93]
    I.R. Young, Significant events in the development of MRI, J. Magn. Reson. Imaging, 19 (2004), 525.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Pierre-Jean Nacher
    • 1
  1. 1.Laboratoire Kastler BrosselENS, UPMC and CNRSParisFrance

Personalised recommendations