Advertisement

The Spin pp 105-145 | Cite as

Probing a Single Isolated Electron: New Measurements of the Electron Magnetic Moment and the Fine Structure Constant

  • Gerald Gabrielse
Part of the Progress in Mathematical Physics book series (PMP, volume 55)

Abstract

For these measurements one electron is suspended for months at a time within a cylindrical Penning trap [1], a device that was invented long ago just for this purpose. The cylindrical Penning trap provides an electrostatic quadrupole potential for trapping and detecting a single electron [2]. At the same time, it provides a right, circular microwave cavity that controls the radiation field and density of states for the electron’s cyclotron motion [3].

Keywords

Feedback Gain Quantum Jump Cyclotron Motion Axial Oscillation Trap Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Gabrielse and F. C. MacKintosh, Intl. J. of Mass Spec. and Ion Proc. 57, 1 (1984).CrossRefGoogle Scholar
  2. [2]
    J. N. Tan and G. Gabrielse, Appl. Phys. Lett. 55, 2144 (1989).CrossRefADSGoogle Scholar
  3. [3]
    L. S. Brown, G. Gabrielse, K. Helmerson, and J. Tan, Phys. Rev. Lett. 55, 44 (1985).CrossRefADSGoogle Scholar
  4. [4]
    S. Peil and G. Gabrielse, Phys. Rev. Lett. 83, 1287 (1999).CrossRefADSGoogle Scholar
  5. [5]
    B. D’Urso, B. Odom, and G. Gabrielse, Phys. Rev. Lett. 90, 43001 (2003).CrossRefGoogle Scholar
  6. [6]
    B. D’Urso, R. Van Handel, B. Odom, D. Hanneke, and G. Gabrielse, Phys. Rev. Lett. 94, 113002 (2005).CrossRefADSGoogle Scholar
  7. [7]
    B. Odom, D. Hanneke, B. D’Urso, and G. Gabrielse, Phys. Rev. Lett. 97, 030801 (2006).CrossRefADSGoogle Scholar
  8. [8]
    G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, Phys. Rev. Lett. 97, 030802 (2006).CrossRefADSGoogle Scholar
  9. [9]
    G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, Phys. Rev. Lett. 99, 039902 (2007).CrossRefADSGoogle Scholar
  10. [10]
    X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 79, 769 (1997).CrossRefADSGoogle Scholar
  11. [11]
    M. Weidinger, B. T. H. Varcoe, R. Heerlein, and H. Walther, in Abstracts of ICAP 16 (Univ. of Windsor, Windsor, 1998), p. 362.Google Scholar
  12. [12]
    P. Domokos, M. Brune, J. M. Raimond, and S. Haroche, epjd 1, 1 (1998).ADSGoogle Scholar
  13. [13]
    D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 76, 1796 (1996).CrossRefADSGoogle Scholar
  14. [14]
    I. Bouchoule, H. Perrin, A. Kuhn, M. Morinaga,, and C. Salomon, Phys. Rev. A 59, R8 (1999).CrossRefADSGoogle Scholar
  15. [15]
    J. Tan and G. Gabrielse, Phys. Rev. Lett. 67, 3090 (1991).CrossRefADSGoogle Scholar
  16. [16]
    G. Gabrielse and J. N. Tan, “One Electron in a Cavity” (Academic Press, New York, 1994), pp. 267–299.Google Scholar
  17. [17]
    L. S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986).CrossRefADSGoogle Scholar
  18. [18]
    R. S. Van Dyck, Jr., P. B. Schwinberg, and H. G. Dehmelt, Phys. Rev. Lett. 59, 26 (1987).CrossRefADSGoogle Scholar
  19. [19]
    K. S. Thorne, R. W. P. Drever, and C. M. Caves, Phys. Rev. Lett. 40, 667 (1978).CrossRefADSGoogle Scholar
  20. [20]
    V. B. Braginsky and F. Y. Khalili, Rev. Mod. Phys. 68, 1 (1996).CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    M. Rigo, G. Alber, F. Mota-Furtado, and P. F. O’Mahony, Phys. Rev. A 55, 1665 (1997).CrossRefADSGoogle Scholar
  22. [22]
    G. Gabrielse and H. Dehmelt, Phys. Rev. Lett. 55, 67 (1985).CrossRefADSGoogle Scholar
  23. [23]
    M. Strutt and A. V. der Ziel, Physica IX, 513 (1942).Google Scholar
  24. [24]
    C. Kittel, “Elementary Statistical Physics” (Wiley, New York, 1958), pp. 141–156.Google Scholar
  25. [25]
    B. B. V. I. J. M. W. Milatz, J. J. Van Zolingen, Physica 19, 195 (1953).CrossRefADSGoogle Scholar
  26. [26]
    P. G. Roll, R. Krotkov, and R. H. Dicke, Ann. of Phys. 26, 442 (1964).MATHCrossRefADSMathSciNetGoogle Scholar
  27. [27]
    R. L. Forward, J. Appl. Phys. 50, 1 (1979).CrossRefADSGoogle Scholar
  28. [28]
    B. E. Bernard and R. C. Ritter, J. Appl. Phys. 64, 2833 (1988).CrossRefADSGoogle Scholar
  29. [29]
    P. F. Cohadon, A. Heidmann, and M. Pinard, Phys. Rev. Lett. 83, 3174 (1999).CrossRefADSGoogle Scholar
  30. [30]
    S. van der Meer, Rev. Mod. Phys. 57, 689 (1985).CrossRefADSGoogle Scholar
  31. [31]
    H. Dehmelt, W. Nagourney, and J. Sandberg, Proc. Natl. Acad. Sci. USA 83, 5761 (1986).CrossRefADSGoogle Scholar
  32. [32]
    S. L. Rolston and G. Gabrielse, hyper 44, 233 (1988).CrossRefGoogle Scholar
  33. [33]
    N. Beverini, V. Lagomarsino, G. Manuzio, F. Scuri, G. Testera, and G. Torelli, Phys. Rev. A 38, 107 (1988).CrossRefADSGoogle Scholar
  34. [35]
    J. B. Johnson, Phys. Rev. 32, 97 (1928).CrossRefADSGoogle Scholar
  35. [36]
    H. Nyquist, Phys. Rev. 32, 110 (1928).CrossRefADSGoogle Scholar
  36. [38]
    S. Rainville, M. Bradley, J. Porto, J. Thompson, and D. Pritchard, Hyperfine Int. 132, 177 (2001).CrossRefADSGoogle Scholar
  37. [40]
    T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, J. Appl. Phys. 69, 668 (1991).CrossRefADSGoogle Scholar
  38. [41]
    A. N. Cleland and M. L. Roukes, Nature 392, 160 (1998).CrossRefADSGoogle Scholar
  39. [42]
    M. Lax, Phys. Rev. 160, 290 (1967).CrossRefADSGoogle Scholar
  40. [43]
    W. B. Davenport, Jr., J. Appl. Phys. 24, 720 (1953).CrossRefADSGoogle Scholar
  41. [44]
    W. F. Walker, T. K. Sarkar, F. I. Tseng, and D. D. Weiner, IEEE Trans. Inst. Meas. 31, 239 (1982).Google Scholar
  42. [45]
    L. S. Brown, Ann. Phys. (N.Y.) 159, 62 (1985).CrossRefADSGoogle Scholar
  43. [46]
    R. S. Van Dyck, Jr., P. B. Schwinberg, and H. G. Dehmelt, Phys. Rev. Lett. 38, 310 (1977).CrossRefADSGoogle Scholar
  44. [47]
    W. Quint and G. Gabrielse, Hyperfine Interact. 76, 379 (1993).CrossRefADSGoogle Scholar
  45. [48]
    S. Eidelman, et al., Phys. Lett. B 592, 1 (2004).CrossRefADSGoogle Scholar
  46. [49]
    G. Gabrielse, A. Khabbaz, D. S. Hall, C. Heimann, H. Kalinowsky, and W. Jhe, Phys. Rev. Lett. 82, 3198 (1999).CrossRefADSGoogle Scholar
  47. [50]
    H. Häffner, T. Beier, N. Hermanspahn, H.-J. Kluge, W. Quint, S. Stahl, J. Verdú, and G. Werth, Phys. Rev. Lett. 85, 5308 (2000).CrossRefADSGoogle Scholar
  48. [51]
    S. J. Brodsky and S. D. Drell, Phys. Rev. D 22, 2236 (1980).CrossRefADSGoogle Scholar
  49. [52]
    A. Rich and J. C. Wesley, Rev. Mod. Phys. 44, 250 (1972).CrossRefADSGoogle Scholar
  50. [53]
    R. S. Van Dyck Jr., P. B. Schwinberg, and H. G. Dehmelt, The Electron (Kluwer Academic Publishers, Netherlands, 1991).Google Scholar
  51. [54]
    P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. 77, 1 (2005).CrossRefADSGoogle Scholar
  52. [55]
    G. W. Bennett and et al., Phys. Rev. D 73, 072003 (2006).CrossRefADSGoogle Scholar
  53. [56]
    L. S. Brown and G. Gabrielse, Phys. Rev. A 25, 2423 (1982).CrossRefADSGoogle Scholar
  54. [57]
    D. G. Boulware, L. S. Brown, and T. Lee, Phys. Rev. D 32, 729 (1985).CrossRefADSGoogle Scholar
  55. [58]
    P. Cladé, E. de Mirandes, M. Cadoret, S. Guellati-Khélifa, C. Schwob, F. Nez, L. Julien, and F. Biraben, Phys. Rev. Lett. 96, 033001 (2006a).CrossRefADSGoogle Scholar
  56. [59]
    V. Gerginov, K. Calkins, C. E. Tanner, J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, Phys. Rev. A 73, 032504 (2006).CrossRefADSGoogle Scholar
  57. [62]
    T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Nucl. Phys. B740, 138 (2006a).CrossRefADSGoogle Scholar
  58. [63]
    A. Czarnecki, B. Krause, and W. J. Marciano, Phys. Rev. Lett. 76, 3267 (1996).CrossRefADSGoogle Scholar
  59. [64]
    J. Schwinger, Phys. Rev. 73, 416L (1948).MATHCrossRefADSMathSciNetGoogle Scholar
  60. [65]
    C. M. Sommerfield, Phys. Rev. 107, 328 (1957).CrossRefADSGoogle Scholar
  61. [66]
    C. M. Sommerfield, Ann. Phys. (N.Y.) 5, 26 (1958).MATHCrossRefADSMathSciNetGoogle Scholar
  62. [67]
    A. Petermann, Helv. Phys. Acta 30, 407 (1957).Google Scholar
  63. [68]
    S. Laporta and E. Remiddi, Phys. Lett. B 265, 182 (1991).CrossRefADSGoogle Scholar
  64. [69]
    S. Laporta, Phys. Rev. D 47, 4793 (1993a).CrossRefADSGoogle Scholar
  65. [70]
    S. Laporta and E. Remiddi, Phys. Lett. B 356, 390 (1995).CrossRefADSGoogle Scholar
  66. [71]
    S. Laporta, Phys. Lett. B 343, 421 (1995).CrossRefADSGoogle Scholar
  67. [72]
    S. Laporta and E. Remiddi, Phys. Lett. B 379, 283 (1996).CrossRefADSGoogle Scholar
  68. [73]
    T. Kinoshita, Phys. Rev. Lett. 75, 4728 (1995).CrossRefADSGoogle Scholar
  69. [74]
    M. A. Samuel and G. Li, Phys. Rev. D 44, 3935 (1991).CrossRefADSGoogle Scholar
  70. [75]
    G. Li, R. Mendel, and M. A. Samuel, Phys. Rev. D 47, 1723 (1993).CrossRefADSGoogle Scholar
  71. [76]
    A. Czarnecki and M. Skrzypek, Phys. Lett. B 449, 354 (1999).CrossRefADSGoogle Scholar
  72. [77]
    S. Laporta, Nuovo Cim. A 106A, 675 (1993b).CrossRefADSGoogle Scholar
  73. [78]
    S. Laporta and E. Remiddi, Phys. Lett. B 301, 440 (1993).CrossRefADSGoogle Scholar
  74. [79]
    B. Lautrup, Phys. Lett. 69B, 109 (1977).MathSciNetGoogle Scholar
  75. [80]
    T. Kinoshita and M. Nio, Phys. Rev. Lett. 90, 021803 (2003).CrossRefADSGoogle Scholar
  76. [81]
    P. Cvitanovic and T. Kinoshita, Phys. Rev. D 10, 4007 (1974).CrossRefADSGoogle Scholar
  77. [82]
    T. Kinoshita, Theory of the Anomalous Magnetic Moment of the Electron? Nu-merical Approach (World Scientific, Singapore, 1990).Google Scholar
  78. [83]
    G. P. Lepage, J. Comput. Phys. 27, 192 (1978).MATHCrossRefADSGoogle Scholar
  79. [85]
    V. W. Hughes and T. Kinoshita, Rev. Mod. Phys. 71, S133 (1999).CrossRefGoogle Scholar
  80. [86]
    T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. D 73, 013003 (2006b).CrossRefGoogle Scholar
  81. [87]
    P. Cladé, E. de Mirandes, M. Cadoret, S. Guellati-Khélifa, C. Schwob, F. Nez, L. Julien, and F. Biraben, Phys. Rev. A 74, 052109 (2006b).CrossRefADSGoogle Scholar
  82. [88]
    P. Becker, G. Cavagnero, U. Kuetgens, G. Mana, and E. Massa, IEEE T. on Instrum. Meas. 56, 230 (2007).CrossRefGoogle Scholar
  83. [89]
    C. Schwob, L. Jozefowski, B. de Beauvoir, L. Hilico, F. Nez, L. Julien, F. Biraben, O. Acef, J. J. Zondy, and A. Clairon, Phys. Rev. Lett. 82, 4960 (1999).CrossRefADSGoogle Scholar
  84. [90]
    M. P. Bradley, J. V. Porto, S. Rainville, J. K. Thompson, and D. E. Pritchard, Phys. Rev. Lett. 83, 4510 (1999).CrossRefADSGoogle Scholar
  85. [91]
    T. Beier, H. Häffner, N. Hermanspahn, S. G. Karshenboim, H.-J. Kluge, W. Quint, S. Stahl, J. Verdú, and G. Werth, Phys. Rev. Lett. 88, 011603 (2002).CrossRefADSGoogle Scholar
  86. [92]
    D. L. Farnham, R. S. Van Dyck, Jr., and P. B. Schwinberg, Phys. Rev. Lett. 75, 3598 (1995).CrossRefADSGoogle Scholar
  87. [93]
    T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Phys. Rev. Lett. 82, 3568 (1999).CrossRefADSGoogle Scholar
  88. [94]
    A. Wicht, J. M. Hensley, E. Sarajlic, and S. Chu, Phys. Scr. T102, 82 (2002).CrossRefGoogle Scholar
  89. [96]
    D. Hanneke, S. Fogwell, and G. Gabrielse, New Measurement of the Electron Magnetic Moment and the Fine Structure Constant, Phys. Rev. Lett. 100, 120801 (2008).CrossRefADSGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Gerald Gabrielse
    • 1
  1. 1.Leverett Professor of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations