Skip to main content

Counting Riemann Surfaces

  • Chapter
  • First Online:
Counting Surfaces

Part of the book series: Progress in Mathematical Physics ((PMP,volume 70))

  • 1963 Accesses

Abstract

In the previous chapter, we have computed the asymptotic generating functions of large maps, and we have seen that they are related to the ( p, q) minimal model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hint: notice that if f is bijective, then exactly one point is sent to \(\infty\), and the fact that f is analytic and bijective means that f can only have one simple pole, and is analytic everywhere else. Then, use that a holomorphic function with no pole on a compact surface can only be a constant.

Bibliography

  1. E. Arbarello, M. Cornalba, Combinatorial and algebro-geometric cohomology classes on the moduli space of curves. J. Algebraic Geom. 5, 705–709 (1996)

    MathSciNet  MATH  Google Scholar 

  2. E. Arbarello, J.D. Harris, M. Cornalba, P. Griffiths, Geometry of Algebraic Curves: Volume II with a Contribution by Joseph Daniel Harris, vol. 268 (Springer, New York, 2011)

    MATH  Google Scholar 

  3. K.M. Chapman, M. Mulase, B. Safnuk, The Kontsevich constants for the volume of the moduli of curves and topological recursion. arXiv preprint (2010). arXiv:1009.2055

    Google Scholar 

  4. T. Ekedahl, S. Lando, M. Shapiro, A. Vainshtein, On Hurwitz numbers and Hodge integrals. C. R. Acad. Sci. Ser. I Math. 328(12), 1175–1180 (1999)

    MathSciNet  MATH  Google Scholar 

  5. J. Harer, D. Zagier, The euler characteristic of the moduli space of curves. Invent. Math. 85(3), 457–485 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Kontsevich, Intersection theory on the moduli space of curves and the matrix airy function. Commun. Math. Phys. 147(1), 1–23 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Looijenga, Cellular decompositions of compactified moduli spaces of pointed curves, in The Moduli Space of Curves (Springer, New York, 1995), pp. 369–400

    MATH  Google Scholar 

  8. M. Mirzakhani, Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces. Invent. Math. 167(1), 179–222 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Mulase, B. Safnuk, Mirzakhani’s recursion relations, Virasoro constraints and the KdV hierarchy (2006), p. 21. arXiv:math/0601194

    Google Scholar 

  10. A. Okounkov, Generating functions for intersection numbers on moduli spaces of curves. Int. Math. Res. Not. 2002(18), 933–957 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Okounkov, R. Pandharipande, Gromov-Witten theory, Hurwitz numbers, and matrix models, in I, Proc. Symposia Pure Math, vol. 80 (2009), pp. 325–414

    Google Scholar 

  12. R.C. Penner, Perturbative series and the moduli space of riemann surfaces. J. Differ. Geom. 27(1), 35–53 (1988)

    MathSciNet  MATH  Google Scholar 

  13. K. Strebel, Quadratic Differentials (Springer, New York, 1984)

    Book  MATH  Google Scholar 

  14. E. Witten, Two dimensional gravity and intersection theory on moduli space. Surv. Differ. Geom. 1, 243–310 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Wolpert, On the homology of the moduli space of stable curves. Ann. Math. 118(3), 491–523 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Zvonkine, Strebel differentials on stable curves and Kontsevich’s proof of Witten’s conjecture. arXiv preprint math/0209071 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eynard, B. (2016). Counting Riemann Surfaces. In: Counting Surfaces. Progress in Mathematical Physics, vol 70. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-8797-6_6

Download citation

Publish with us

Policies and ethics