Counting Large Maps

  • Bertrand Eynard
Part of the Progress in Mathematical Physics book series (PMP, volume 70)


Initially, in quantum gravity and string theory, the problem of counting maps, i.e. surfaces made of polygons, was introduced only as a discretized approximation for counting continuous surfaces. The physical motivation is the following: in string theory, particles are 1-dimensional loops called strings, and under time evolution their trajectories in space-time are surfaces. Quantum mechanics amounts to averaging over all possible trajectories between given initial and final states, i.e. all possible surfaces between given boundaries. However, trajectories should be counted only once modulo their symmetries, in particular conformal reparametrizations, in other words, trajectories are in fact Riemann surfaces (equivalence class of surfaces modulo conformal reparametrizations).


Minimal Model Spectral Curve Conformal Field Theory String Equation Pure Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Abramowitz, I.A Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol. 55 (Dover, New York, 1972)Google Scholar
  2. 8.
    O. Babelon, D. Bernard, M. Talon, Introduction to Classical Integrable Systems. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2002)Google Scholar
  3. 10.
    M. Bergère, B. Eynard, Determinantal formulae and loop equations. ArXiv e-prints (2009)Google Scholar
  4. 11.
    M. Bergère, G. Borot, B. Eynard, Rational differential systems, loop equations, and application to the q-th reductions of kp. arXiv preprint (2013). arXiv:1312.4237Google Scholar
  5. 23.
    R. Conte, M. Musette, The Painlevé Handbook (Springer, Berlin, 2008)MATHGoogle Scholar
  6. 24.
    F. David, A. Kupiainen, R. Rhodes, V. Vargas, Liouville quantum gravity on the Riemann sphere. ArXiv e-prints (2014)Google Scholar
  7. 27.
    M.R. Douglas, S.H. Shenker, Strings in less than one dimension. Nucl. Phys. B 335, 635–654 (1990)MathSciNetCrossRefGoogle Scholar
  8. 28.
    B. Duplantier, S. Sheffield, Liouville quantum gravity and KPZ. ArXiv e-prints (2008)Google Scholar
  9. 34.
    B. Eynard, N. Orantin, Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1(2), 347–452 (2007)MathSciNetCrossRefMATHGoogle Scholar
  10. 40.
    P.D. Francesco, P. Ginsparg, J. Zinn-Justin, 2d gravity and random matrices. Phys. Rep. 254(1), 1–133 (1995)CrossRefGoogle Scholar
  11. 41.
    P.D. Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory (Springer, New York, 1997)CrossRefMATHGoogle Scholar
  12. 47.
    R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192 (1971)CrossRefMATHGoogle Scholar
  13. 49.
    A.R. Its, V.B. Matveev, Schrödinger operators with finite-gap spectrum and n-soliton solutions of the korteweg-de vries equation. Theor. Math. Phys. 23(1), 343–355 (1975)MathSciNetCrossRefGoogle Scholar
  14. 51.
    M. Jimbo, T. Miwa, Solitons and infinite dimensional Lie algebras. RIMS 19, 943–1001 (1983)MathSciNetCrossRefMATHGoogle Scholar
  15. 52.
    M. Jimbo, T. Miwa, K. Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function. Phys. D 2(2), 306–352 (1981)Google Scholar
  16. 53.
    B.B. Kadomtsev, V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl 15, 539–541 (1970)MATHGoogle Scholar
  17. 55.
    V.G. Knizhnik, A.M. Polyakov, A.B. Zamolodchikov, Fractal structure of 2D quantum gravity. Mod. Phys. Lett. A3, 819 (1988)MathSciNetCrossRefGoogle Scholar
  18. 58.
    D.J. Korteweg, G. de Vries, Xli. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. Ser. 5 39(240), 422–443 (1895)Google Scholar
  19. 59.
    I. Krichever, Methods of algebraic geometry in the theory of non linear equations. Russ. Math. Surv. 32, 185–213 (1977)CrossRefMATHGoogle Scholar
  20. 60.
    I. Krichever, The Tau function of the universal Whitham hierarchy, matrix models and topological field theories. Commun. Pure Appl. Math. 47(4), 437–475 (1994)MathSciNetCrossRefMATHGoogle Scholar
  21. 76.
    A.M. Polyakov, Quantum geometry of bosonic strings. Phys. Lett. B103, 207–210 (1981)MathSciNetCrossRefGoogle Scholar
  22. 79.
    S. Rohde, O. Schramm, Basic properties of SLE. ArXiv Mathematics e-prints (2001)Google Scholar
  23. 82.
    C.A. Tracy, H. Widom, Level-spacing distributions and the airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bertrand Eynard
    • 1
  1. 1.CEA Saclay Institut de Physique Théorique (IPHT)Gif sur YvetteFrance

Personalised recommendations