Skip to main content

An Improvement on Vajda’s Inequality

  • Chapter

Part of the book series: Progress in Probability ((PRPR,volume 60))

Abstract

Let D and V be respectively information divergence and variational distance. It is shown that \( D \geqslant \log \tfrac{2} {{2 - V}} - \tfrac{{2 - V}} {2}\log \tfrac{{2 + V}} {2} \), hence improving Vajda’s inequality \( D \geqslant \log \tfrac{{2 + V}} {{2 - V}} - \tfrac{{2V}} {{2 + V}} \). The proof is based on a lemma which states that for any f-divergence symmetric in the sense that D f (P, Q)=D f (Q, P), one has that inf\( \left\{ {D_f \left( {P,Q} \right):V\left( {P,Q} \right) = v} \right\} = \tfrac{{2 - v}} {2}f\tfrac{{2 + v}} {{2 - v}} - f'\left( 1 \right)v \). This lemma has interest on its own and implies precise lower bounds for several well-known divergences.

Research partially supported by CAPES, CNPq and FINATEC grants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Csiszár, “A note on Jensen’s inequality,” Studia Sci. Math. Hungar., Vol. 1, pp. 185–188, 1966.

    MATH  MathSciNet  Google Scholar 

  2. J.H.B. Kemperman, “On the optimal rate of transmitting information,” Ann. Math. Statist, vol. 40, pp. 2156–2177, Dec. 1969.

    Article  MATH  MathSciNet  Google Scholar 

  3. M.S. Pinsker, Information and Information Stability of Random Variables and Processes. A. Feinstein, tr. and ed., San Francisco: Holden-Day, 1964.

    Google Scholar 

  4. S. Kullback, “A lower bound for discrimination information in terms of variation,” IEEE Trans. Inf. Theory, vol. IT-13, pp. 126–127, Jan. 1967.

    Article  Google Scholar 

  5. S. Kullback, “Correction to “a lower bound for discrimination information in terms of variation”,” IEEE Trans. Inf. Theory, vol. IT-16, p. 652, 1970.

    Article  Google Scholar 

  6. I. Vajda, “Note on discrimination information and variation”, IEEE Trans. Inf. Theory, vol. 16, no. 6, 1970.

    Google Scholar 

  7. F. Topsøe, “Bounds for entropy and divergence of distributions over a two-element set,” J. Ineq. Pure Appl. Math., vol. 2, Article 25, 2001.

    Google Scholar 

  8. A. Fedotov, P. Harremoës, and F. Topsøe, “Refinements of Pinsker’s Inequality,” IEEE Trans. Inf. Theory, vol. 49, pp. 1491–1498, June 2003.

    Article  MATH  Google Scholar 

  9. A. Fedotov, P. Harremoës, and F. Topsøe, “Best Pinsker Bound equals Taylor Polynomial of Degree 49,” Computational technologies, Vol. 8, pp. 3–14, 2003.

    Google Scholar 

  10. I. Csiszár, “Information-type measures of difference of probability distributions and indirect observations,” Studia Sci. Math. Hungar., vol. 2, pp. 299–318, 1967.

    MATH  MathSciNet  Google Scholar 

  11. S.M. Ali and S.D. Silvey, “A general class of coefficients of divergence of one distribution from another,” J. Roy. Statist. Soc. Ser B vol. 28, pp. 131–142, 1966.

    MATH  MathSciNet  Google Scholar 

  12. G.L. Gilardoni, “On the minimum f-divergence for given total variation,” C. R. Acad. Sci. Paris, Ser. I, vol. 343, pp. 763–766, 2006.

    MATH  MathSciNet  Google Scholar 

  13. L. LeCam. Asymptotic Methods in Statistical Theory, New York: Springer-Verlag, 1986.

    Google Scholar 

  14. S.S. Dragomir, V. Gluščević, and C.E.M. Pearce, “Csiszár f-divergence, Ostrowski’s inequality and mutual information,” Nonlinear Analysis, vol. 47, pp. 2375–2386, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Topsøe, “Some inequalities for information divergence and related measures of discrimination,” IEEE Trans. Inf. Theory, vol. 46, pp. 1602–1609, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Gilardoni, G.L. (2008). An Improvement on Vajda’s Inequality. In: Sidoravicius, V., Vares, M.E. (eds) In and Out of Equilibrium 2. Progress in Probability, vol 60. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8786-0_14

Download citation

Publish with us

Policies and ethics