Complexity in Sequences of Solar Flares and Earthquakes

  • Vladimir G. Kossobokov
  • Fabio Lepreti
  • Vincenzo Carbone
Part of the Pageoph Topical Volumes book series (PTV)


In this paper the statistical properties of solar flares and earthquakes are compared by analyzing the energy distributions, the time series of energies and interevent times, and, above all, the distributions of interevent times per se. It is shown that the two phenomena have different statistics of scaling, and even the same phenomenon, when observed in different periods or at different locations, is characterized by different statistics that cannot be uniformly rescaled onto a single, universal curve. The results indicate apparent complexity of impulsive energy release processes, which neither follow a common behaviour nor could be attributed to a universal physical mechanism.


Neutron Star Solar Cycle Seismic Event Solar Flare Geostationary Operational Environmental Satellite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aschwanden, M., Physics of the Solar Corona (Springer-Verlag, Berlin 2004).Google Scholar
  2. Bak, P., Christensen, K., Danon, L., and Scanlon, T. (2002), Unified scaling law for earthquakes, Phys. Rev. Lett. 88, 178501.CrossRefGoogle Scholar
  3. Boffetta, G., Carbone, V., Giuliani, P., Veltri, P., and Vulpiani, A. (1999), Power laws in solar flares: Self-organized criticality or turbulence? Phys. Rev. Lett. 83, 4662–4665.CrossRefGoogle Scholar
  4. Bufe, C.G., Nishenko, S.P., and Varnes, D.J. (1994), Seismicity trends and potential for large earthquakes in the Alaska-Aleutian region, Pure Appl. Geophys. 142, 83–99.CrossRefGoogle Scholar
  5. Corral, A. (2003), Local distributions and rate fluctuations in a unified scaling law for earthquakes, Phys. Rev. E 68, 035102.CrossRefGoogle Scholar
  6. Crosby, N.B., Aschwanden, M.J., and Dennis, B.R. (1993), Frequency distributions and correlations of solar X-ray flare parameters, Solar Phys. 143, 275–299.CrossRefGoogle Scholar
  7. Davies, G.F., Dynamic Earth: Plates, Plumes and Mantle Convection, (Cambridge University Press, Cambridge 1999).Google Scholar
  8. de Arcangelis, L., Godano, C., Lippiello, E., and Nicodemi, M. (2006), Universality in solar flare and earthquake occurrence, Phys. Rev. Lett. 96, 051102.CrossRefGoogle Scholar
  9. Gabrielov, A., Newman, W.I., and Turcotte, D.L. (1999), An exactly soluble hierarchical clustering model: Inverse cascades, self-similarity, and scaling, Phys. Rev. E 60, 5293–5300.CrossRefGoogle Scholar
  10. Gutenberg, B., and Richter, C.F., Seismicity of the Earth, 2nd ed. (Princeton University Press, Princeton, N.J. 1954).Google Scholar
  11. Kanamori, H. and Brodsky, E.H. (2001), The Physics of Earthquakes. Physics Today, June 2001, 34–40.Google Scholar
  12. Keilis-Borok, V.I. (1990), The lithosphere of the Earth as a nonlinear system with implications for earthquake prediction, Rev. Geophys. 28 (1), 19–34.CrossRefGoogle Scholar
  13. Kossobokov, V.G. and Mazhkenov, S.A., Spatial characteristics of similarity for earthquake sequences: Fractality of seismicity, Lecture Notes of the Workshop on Global Geophysical Informatics with Applications to Research in Earthquake Prediction and Reduction of Seismic Risk 15 Nov.–16 Dec., 1988), 15 pp., (ICTP, Trieste 1988).Google Scholar
  14. Kossobokov, V.G., Keilis-Borok, V.I., and Cheng, B. (2000), Similarities of multiple fracturing on a neutron star and on the Earth, Phys. Rev. E 61, 3529–3533.CrossRefGoogle Scholar
  15. Kossobokov, V.G. and Nekrasova, A.K. (2005), Temporal variations in the parameters of the Unified Scaling Law for Earthquakes in the eastern part of Honshu Island (Japan), Doklady Earth Sciences 405, 1352–1356.Google Scholar
  16. Lin, R.P., Schwartz, R.A., Kane, S.R., Pelling, R.M., and Hurley, K.C. (1984), Solar hard X-ray microflares, Astrophys. J. 283, 421–425.CrossRefGoogle Scholar
  17. Norris, J.P., Herz, P., Wood, K.S., and Kouveliotou, C. (1991), On the nature of soft gamma repeaters, Astrophys. J. 366, 240–252.CrossRefGoogle Scholar
  18. Okubo, P.G., and Aki, K. (1987), Fractal geometry in the San Andreas Fault system, J. Geophys. Res. 92 (B1), 345–356.CrossRefGoogle Scholar
  19. Omori, F. (1894), On the after-shocks of earthquakes, J. Coll. Sci. Imp. Univ. Tokyo 7, 111–200.Google Scholar
  20. Thompson, C., and Duncan, R. C. (1995), The soft gamma repeaters as very strongly magnetized neutron stars — I. Radiative mechanism for outbursts, Mon. Not. R. Astr. Soc. 275, 255–300.Google Scholar
  21. Turcotte, D.L., Fractals and Chaos in Geology and Geophysics, 2nd edition, (Cambridge University Press, Cambridge 1997).Google Scholar
  22. Utsu, T., Ogata, Y., and Matsu’ura, R.S. (1995), The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth 43, 1–33.Google Scholar
  23. Varnes, D.J. (1989), Predicting earthquakes by analyzing accelerating precursory seismic activity, Pure Appl. Geophys. 130, 661–686.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 2008

Authors and Affiliations

  • Vladimir G. Kossobokov
    • 1
  • Fabio Lepreti
    • 2
    • 3
  • Vincenzo Carbone
    • 2
    • 3
  1. 1.International Institute of Earthquake Prediction Theory and Mathematical GeophysicsRussian Academy of SciencesMoscowRussian Federation
  2. 2.Dipartimento di FisicaUniversità della CalabriaRende, CSItaly
  3. 3.Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM)Unità di CosenzaRende, CSItaly

Personalised recommendations